Skip to main content
Log in

Mono- versus bifunctionalized Schiff base as a condensation product of m-phenylenediamine and salicylaldehyde: experimental and computational studies

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A.Z. El-Sonbati et al., in their article “Synthesis, characterization of Schiff base metal complexes and their biological investigation” (Appl. Organometal. Chem. 2019, 33, e5048) reported on the synthesis of a new Schiff base named (E)-2-(((3-aminophenyl)imino)methyl)phenol (also known as N-salicylidene-m-phenylenediamine, HL), which was obtained through condensation reaction of m-phenylenediamine and salicylaldehyde in a 1:1 molar ratio. The reported Schiff base HL was involved in the complexation reaction with a series of metal cations named Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). Although no crystal structures of either the parent ligand HL or its complexes with the mentioned metal cations were reported, the newly synthesized compounds were characterized by means of elemental analysis, IR-, UV-vis- and 1H NMR spectroscopy, mass-spectrometry, magnetic susceptibility, conductivity and thermal analyses. The antimicrobial activity of the discussed compounds, together with the molecular docking results, were also reported. Additionally, both the Schiff base HL and its metallocomplexes were thoroughly examined by quantum chemical calculations. Despite a plethora of different methods being applied to characterize the obtained compounds, herein, I argue that discussion of the results is doubtful. Furthermore, the results of quantum chemical calculations are dubious and must be reconsidered. Although numerous synthetic attempts failed in this work, the hypothetically possible Schiff base HL was revisited using quantum chemical calculations.

Graphical abstract

A.Z. El-Sonbati et al., in their article “Synthesis, characterization of Schiff base metal complexes and their biological investigation” (Appl. Organometal. Chem. 2019, 33, e5048) reported on a new Schiff base (E)-2-(((3-aminophenyl)imino)methyl)phenol (also known as N-salicylidene-m-phenylenediamine, HL) and its metallocomplexes. Herein, I argue that the discussion of the results is doubtful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ziessel R 2001 Schiff-based bipyridine ligands. Unusual coordination features and mesomorphic behaviour Coord. Chem. Rev. 216–217 195

  2. Gupta K C, Sutar A K and Lin C-C 2009 Polymer-supported Schiff base complexes in oxidation reactions Coord. Chem. Rev. 253 1926

    Article  CAS  Google Scholar 

  3. Pradeep C P and Das S K 2012 Coordination and supramolecular aspects of the metal complexes of chiral N-salicyl-β-amino alcohol Schiff base ligands: Towards understanding the roles of weak interactions in their catalytic reactions Coord. Chem. Rev. 257 1699

    Article  Google Scholar 

  4. El-Bindary A A, El-Sonbati A Z, Diab M A, Ghoneim M M and Serag L S 2016 Polymeric complexes – LXII. Coordination chemistry of supramolecular Schiff base polymer complexes – A review J. Mol. Struct. 216 318

  5. Zhang J, Xu L and Wong W-Y 2018 Energy materials based on metal Schiff base complexes Coord. Chem. Rev. 355 180

    Article  CAS  Google Scholar 

  6. Liu X and Hamon J-R 2019 Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes Coord. Chem. Rev. 385 94

    Article  Google Scholar 

  7. Karmakar M and Chattopadhyay S 2019 A comprehensive overview of the orientation of tetradentate N2O2 donor Schiff base ligands in octahedral complexes of trivalent 3d metals J. Mol. Struct. 1186 155

    Article  CAS  Google Scholar 

  8. Hadjoudis E, Vitterakis M, Moustakali I and Mavridis I 1987 Photochromism and thermochromism of Schiff bases in the solid state and in rigid glasses Tetrahedron 43 1345

    Article  CAS  Google Scholar 

  9. Hadjoudis E and Mavridis I M 2004 Photochromism and thermochromism of Schiff bases in the solid state: Structural aspects Chem. Soc. Rev. 33 579

    PubMed  CAS  Google Scholar 

  10. Amimoto K and Kawato T 2005 Photochromism of organic compounds in the crystal state J. Photochem. Photobiol. C: Photochem. Rev. 6 207

    Article  CAS  Google Scholar 

  11. Haneda T, Kawano M, Kojima T and Fujita M 2007 Thermo-to-photo-switching of the chromic behavior of salicylideneanilines by inclusion in a porous coordination network Angew. Chem. Int. Ed. 46 6643

    Article  CAS  Google Scholar 

  12. Filarowski A, Koll A and Sobczyk L 2009 Intramolecular hydrogen bonding in o-hydroxy aryl Schiff bases Curr. Org. Chem. 13 172

    Article  CAS  Google Scholar 

  13. Bertolasi V, Gilli P and Gilli G 2009 Crystal chemistry and prototropic tautomerism in 2-(1-Iminoalkyl)-phenols (or naphthols) and 2-diazenyl-phenols (or naphthols) Curr. Org. Chem. 13 250

    Article  CAS  Google Scholar 

  14. Hadjoudis E, Chatziefthimiou S D and Mavridis I M 2009 Anils: Photochromism by H-transfer Curr. Org. Chem. 13 269

    Article  CAS  Google Scholar 

  15. Minkin V I, Tsukanov A V, Dubonosov A D and Bren V A 2011 Tautomeric Schiff bases: Iono-, solvato-, thermo-and photochromism J. Mol. Struct. 998 179

    Article  CAS  Google Scholar 

  16. Inokuma Y, Kawano M and Fujita M 2011 Crystalline molecular flasks Nat. Chem. 3 349

    Article  PubMed  CAS  Google Scholar 

  17. Mahmudov K T and Pombeiro A J L 2016 Resonance-assisted hydrogen bonding as a driving force in synthesis and a synthon in the design of materials Chem. Eur J. 22 16356

    Article  PubMed  CAS  Google Scholar 

  18. Safin D A, Robeyns K and Garcia Y 2012 Crown ether-containing N-salicylidene aniline derivatives: Synthesis, characterization and optical properties CrystEngComm 14 5523

  19. Safin D A, Robeyns K and Garcia Y 2012 Solid-state thermo- and photochromism in N,N′-bis(5-X-salicylidene)diamines (X = H, Br) RSC Adv. 2 11379

  20. Safin D A, Babashkina M G and Garcia Y 2013 Crown ether-containing Schiff base as a highly efficient “turn-on” fluorescent sensor for determination and separation of Zn2+ in water Dalton Trans. 42 1969

  21. Das S, Sahana A, Banerjee A, Lohar S, Safin D A, Babashkina M G, Bolte M, Garcia Y, Hauli I, Mukhopadhyay S K and Das D 2013 Ratiometric fluorescence sensing and intracellular imaging of Al3+ ions driven by an intramolecular excimer formation of a pyrimidine–pyrene scaffold Dalton Trans. 42 4757

  22. Safin D A and Garcia Y 2013 First evidence of thermo- and two-step photochromism of tris-anils RSC Adv. 3 6466

    Article  CAS  Google Scholar 

  23. Karak D, Das S, Lohar S, Banerjee A, Sahana A, Hauli I, Mukhopadhyay S K, Safin D A, Babashkina M G, Bolte M, Garcia Y and Das D. 2013 A naphthalene–thiophene hybrid molecule as a fluorescent AND logic gate with Zn2+ and OAc ions as inputs: cell imaging and computational studies Dalton Trans. 42 6708

  24. Guha S, Lohar S, Sahana A, Banerjee A, Safin D A, Babashkina M G, Mitoraj M P, Bolte M, Garcia Y, Mukhopadhyay S K and Das D 2013 A coumarin-based “turn-on” fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties Dalton Trans. 42 10198

  25. Safin D A, Babashkina M G, Robeyns K, Rouzières M, Clérac R and Garcia Y 2012 From a mononuclear NiII precursor to antiferromagnetically coupled trinuclear double-stranded helicates Dalton Trans. 42 16470

  26. Safin D A, Bolte M and Garcia Y 2014 Photoreversible solid state negative photochromism of N-(3,5-dichlorosalicylidene)-1-aminopyrene CrystEngComm 16 5524

  27. Safin D A, Babashkina M G, Robeyns K, Bolte M and Garcia Y 2014 N-Salicylidene aniline derivatives based on the N′-thiophosphorylated thiourea scaffold CrystEngComm 16 7053

    Article  CAS  Google Scholar 

  28. Safin D A, Bolte M and Garcia Y 2014 Solid-state photochromism and thermochromism of N-salicylidene pyrene derivatives CrystEngComm 16 8786

    Article  CAS  Google Scholar 

  29. Lohar S, Safin D A, Sengupta A, Chattopadhyay A, Sanmartín Matalobos J, Babashkina M G, et al. 2015 Ratiometric sensing of lysine through the formation of the pyrene excimer: experimental and computational studies Chem. Commun. 51 8536

    Article  CAS  Google Scholar 

  30. Safin D A, Babashkina M G, Robeyns K and Garcia Y 2016 C–H⋯Br–C vs. C–Br⋯Br–C vs. C–Br⋯N bonding in molecular self-assembly of pyridine-containing dyes RSC Adv. 6 53669

  31. Safin D A, Robeyns K, Babashkina M G, Filinchuk Y, Rotaru A, Jureschi C, et al. 2016 Polymorphism driven optical properties of an anil dye CrystEngComm 18 7249

    Article  CAS  Google Scholar 

  32. Safin D A, Robeyns K and Garcia Y 2016 1,2,4-Triazole-based molecular switches: Crystal structures, Hirshfeld surface analysis and optical properties CrystEngComm 18 7284

    Article  CAS  Google Scholar 

  33. Shapenova D A, Shiryaev A A, Bolte M, Kukułka M, Szczepanik DW, Hooper J, et al. 2020 Resonance assisted hydrogen bonding phenomenon unveiled through both experiments and theory: A new family of ethyl N-salicylideneglycinate dyes Chem. Eur. J. 26 12987

    Article  PubMed  CAS  Google Scholar 

  34. Shiryaev A A, Burkhanova T M, Mahmoudi G, Babashkina M G and Safin D A 2020 Photophysical properties of ethyl N-(5-bromosalicylidene)glycinate and ethyl N-(5-nitrosalicylidene)glycinate in CH2Cl2 J. Lumin. 226 117454

  35. Alkhimova L E, Babashkina M G and Safin D A 2021 Family of ethyl N-salicylideneglycinate dyes stabilized by intramolecular hydrogen bonding: Photophysical properties and computational study Molecules 26 3112

  36. Safin D A, Babashkina M G, Bolte M, Ptaszek A L, Kukułka M and Mitoraj M P 2021 Novel sterically demanding Schiff base dyes: An insight from experimental and theoretical calculations J. Lumin. 238 118264

    Article  CAS  Google Scholar 

  37. Shiryaev A A, Goncharenko A N, Burkhanova T M, Alkhimova L E, Babashkina M G, Chandrasekaran R and Safin D A 2021 A chiral (1R,2R)-N,N′-bis-(salicylidene)-1,2-diphenyl-1,2-ethanediamine Schiff base dye: synthesis, crystal structure, Hirshfeld surface analysis, computational study, photophysical properties and in silico antifungal activity J. Iran. Chem. Soc. 18 2897

  38. El‐Sonbati A Z, Mahmoud G, Mohamed G G, Diab M A, Morgan Sh M and Abbas S Y 2019 Synthesis, characterization of Schiff base metal complexes and their biological investigation Appl. Organometal. Chem. e5048

  39. Dennington R, Keith T A and Millam J M 2016 GaussView, Version 6.0, Semichem Inc., Shawnee Mission, KS

  40. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2013 Gaussian 09, Revision D.01

  41. Krishnan R, Binkley J S, Seeger R and Pople J A 1980 Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys. 72 650

  42. Frisch M J, Pople J A and Binkley J S 1984 Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets J. Chem. Phys. 80 3265

  43. Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648

  44. Dey S K and Janiak C 2020 The curious case of salicylidene-based fluoride sensors: chemosensors or chemodosimeters or none of them RSC Adv. 10 14689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Groom C R, Bruno I J, Lightfoot M P and Ward S C 2016 The Cambridge Structural Database Acta Crystallogr., Sect. B 72 171

  46. Kwiatkowski M, Kwiatkowski E, Olechnowicz A, Kosciuszko-Panek B and Ho D M 1994 Crystal and molecular structure of N-salicylidene-1,2-diaminobenzene Pol. J. Chem. 68 85

    CAS  Google Scholar 

  47. Shahverdizadeh G H, Ng S W, Tiekink E R T and Mirtamizdoust B 2011 2-[N-(3-Amino-4-nitrophenyl)carboximidoyl]phenol Acta Crystallogr., Sect. E 67 o2964

  48. Yadav R, Odera K, Rai A, Takahashi R and Mishra L 2019 Synthesis, characterization, and supramolecular architectures of two distinct classes of probes for the visualization of endogenously generated hypochlorite ions in response to cellular activity J. Photochem. Photobiol. B 198 111594

    Article  PubMed  CAS  Google Scholar 

  49. Sain A and Mobin S M 2016 CSD Commun.

  50. Obot I B, Macdonald D D and Gasem Z M 2016 Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview Corros. Sci. 99 1

  51. Goyal M, Kumar S, Bahadur I, Verma C and Ebenso E E 2018 Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review J. Mol. Liq. 256 565

    Article  CAS  Google Scholar 

  52. Harvey T J, Walsh F C and Nahlé A H 2018 A review of inhibitors for the corrosion of transition metals in aqueous acids J. Mol. Liq. 266 160

    Article  CAS  Google Scholar 

  53. Chauhan DS, Verma C and Quraishi M A 2021 Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights J. Mol. Struct. 1227 129374

    Article  CAS  Google Scholar 

  54. Kokalj A 2021 Molecular modeling of organic corrosion inhibitors: Calculations, pitfalls, and conceptualization of molecule–surface bonding Corros. Sci. 193 109650

    Article  CAS  Google Scholar 

  55. Gotman I 1997 Characteristics of metals used in implants J. Endourol. 11 383

    Article  PubMed  CAS  Google Scholar 

  56. Manivasagam G, Dhinasekaran D and Rajamanickam A 2010 Biomedical implants: Corrosion and its prevention - A review Recent Pat. Corros. Sci. 2 40

    Article  CAS  Google Scholar 

  57. Aggarwal D, Kumar V and Sharma S 2022 Drug-loaded biomaterials for orthopedic applications: A review J. Control Release 344 113

    Article  PubMed  CAS  Google Scholar 

  58. Michaelson H B 1977 Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide J. Appl. Phys. 48 4729

  59. Abraham J P, Sajan D, Joe I H and Jayakumar V S 2008 Spectrochim. Acta Part A 71 355

    Article  Google Scholar 

  60. Karamanis P, Pouchan C and Maroulis G 2008 Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations Phys. Rev. A 77 013201

    Article  Google Scholar 

  61. Eşme A and Sağdınç S G 2017 Spectroscopic (FT-IR, FT-Raman, UV-Vis) analysis, conformational, HOMO-LUMO, NBO and NLO calculations on monomeric and dimeric structures of 4-pyridazinecarboxylic acid by HF and DFT methods J. Mol. Struct. 1147 322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir A. Safin.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safin, D.A. Mono- versus bifunctionalized Schiff base as a condensation product of m-phenylenediamine and salicylaldehyde: experimental and computational studies. J Chem Sci 136, 4 (2024). https://doi.org/10.1007/s12039-023-02234-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02234-6

Keywords

Navigation