Skip to main content
Log in

ZIF-8 prepared in ionic liquid microemulsions for efficient capture of phosphate from water

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A high-efficiency adsorbent ZIF-8 was successfully prepared in a microemulsion system provided by an ionic liquid, which showed excellent potential for removing phosphate from water. The properties of the adsorbents were determined by several characterization methods, such as X-ray diffraction (XRD), infrared spectroscopy (FTIR) and Brunauere-Emmette-Teller (BET) et al. The results confirmed that ZIF-8 prepared in the ionic liquid microemulsion (ZIF-8-ILM) has a smaller particle size compared with that prepared in an aqueous solution. Moreover, the ZIF-8-ILM holds a high BET specific surface area and pore volume, as well as the textural meso- and macro-porosities formed by inter-particle voids. Based on these traits, the ZIF-8-ILM exhibit excellent adsorption capacity for phosphate, as evidenced by a maximum adsorption capacity of 178.99 mg/g was obtained. In addition, the capture of phosphate on ZIF-8-ILM was quite quickly and reached equilibrium within 60 min.

Graphical abstract

A high-efficiency adsorbent ZIF-8 was successfully prepared in a microemulsion system provided by an ionic liquid. The ZIF-8 materials prepared not only had high BET specific surface area and pore volume but also exhibited hierarchical pore structure, which showed excellent potential for removing phosphate from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chen B, Yang Z, Zhu Y and Xia Y 2014 Zeolitic imidazolate framework materials: recent progress in synthesis and applications J. Mater. Chem. A 2 16811

    Article  CAS  Google Scholar 

  2. Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M and Yaghi O M 2010 Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks Acc. Chem. Res. 43 58

    Article  CAS  PubMed  Google Scholar 

  3. Li S, Zhang X and Huang Y 2017 Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water J. Hazard. Mater. 321 711

    Article  CAS  PubMed  Google Scholar 

  4. Aceituno Melgar V M, Kim J and Othman M R 2015 Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance J. Ind. Eng. Chem. 28 1

    Article  CAS  Google Scholar 

  5. Pimentel B R, Parulkar A, Zhou E K, Brunelli N A and Lively R P 2014 Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations ChemSusChem 7 3202

    Article  CAS  PubMed  Google Scholar 

  6. Chaemchuen S, Xiao X, Ghadamyari M, Mousavi B, Klomkliang N, Yuan Y and Verpoort F 2019 Robust and efficient catalyst derived from bimetallic Zn/Co zeolitic imidazolate frameworks for CO2 conversion J. Catal. 370 38

    Article  CAS  Google Scholar 

  7. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, et al. 2018 Ordered macro-microporous metal-organic framework single crystals Science 359 206

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, Chen H, Wu X, Chen S, Qi J, He Z, et al. 2018 Hollow mesoporous silica@zeolitic imidazolate framework capsules and their applications for gentamicin delivery Neural Plast. 2018 2160854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bhattacharjee S, Jang M-S, Kwon H-J and Ahn W-S 2014 Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications Catal. Surv. Asia 18 101

    Article  CAS  Google Scholar 

  10. Shen B, Wang B, Zhu L and Jiang L 2020 Properties of cobalt- and nickel-doped ZIF-8 framework materials and their application in heavy-metal removal from wastewater Nanomaterials 10

  11. Modi A and Bellare J 2020 Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water Sep. Purif. Technol. 249 10

    Article  CAS  Google Scholar 

  12. Yang X, Zhou Y, Sun Z, Yang C and Tang D 2020 Effective strategy to fabricate ZIF-8@ZIF-8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(VI) Colloid Surf. A-Physicochem. Eng. Asp. 603

  13. Sun H, Ju C, Zhao Y, Wang C, Peng X and Wu Y 2020 Preparation of SiO2@ZIF-67/CNTs and research on its adsorption performance at low-temperature Colloid Surf. A-Physicochem. Eng. Asp. 603

  14. Miensah E D, Khan M M, Chen J Y, Zhang X M, Wang P, Zhang Z X, et al. 2019 Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: A review Crit. Rev. Env. Sci. Tec. 50 1874

    Article  CAS  Google Scholar 

  15. Liu Y, Pang H, Wang X, Yu S, Chen Z, Zhang P, Chen L, Song G, Saleh Alharbi N, Omar Rabah S and Wang X 2021 Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: A review Chem. Eng. J. 406

  16. Jiao C, Li M, Ma R, Wang C, Wu Q and Wang Z 2016 Preparation of a Co-doped hierarchically porous carbon from Co/Zn-ZIF: An efficient adsorbent for the extraction of trizine herbicides from environment water and white gourd samples Talanta 152 321

    Article  CAS  PubMed  Google Scholar 

  17. Lin K-Y A and Chang H-A 2015 Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8) Water Air Soil Pollut. 226

  18. Khan N A, Jung B K, Hasan Z and Jhung S H 2015 Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks J. Hazard. Mater. 282 194

    Article  CAS  PubMed  Google Scholar 

  19. Jian M, Liu B, Zhang G, Liu R and Zhang X 2015 Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles Colloids Surf. A Physicochem. Eng. Asp. 465 67

    Article  CAS  Google Scholar 

  20. Yan F, Liu Z-Y, Chen J-L, Sun X-Y, Li X-J, Su M-X, et al. 2014 Nanoscale zeolitic imidazolate framework-8 as a selective adsorbent for theophylline over caffeine and diprophylline RSC Adv. 4 33047

    Article  CAS  Google Scholar 

  21. Wang Y, Zhao W, Qi Z, Zhang L and Peng Y 2020 Phosphate removal by ZIF-8@MWCNT hybrids in presence of effluent organic matter: Adsorbent structure, wastewater quality, and DFT analysis Sci. Total. Environ. 745

  22. Jiang J Q, Yang C X and Yan X P 2013 Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution ACS Appl. Mater. Inter. 5 9837

    Article  CAS  Google Scholar 

  23. Li J, Wu Y-n, Li Z, Zhang B, Zhu M, Hu X, et al. 2014 Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water J. Phys. Chem. C 118 27382

    Article  CAS  Google Scholar 

  24. Wang Y, Jin S, Wang Q, Lu G, Jiang J and Zhu D 2013 Zeolitic imidazolate framework-8 as sorbent of micro-solid-phase extraction to determine estrogens in environmental water samples J. Chromatogr. A 1291 27

    Article  CAS  PubMed  Google Scholar 

  25. dos Santos Ferreira da Silva J, Lopez Malo D, Anceski Bataglion G, Nogueira Eberlin M, Machado Ronconi C, Alves Junior S and De Sa G F 2015 Adsorption in a fixed-bed column and stability of the antibiotic oxytetracycline supported on Zn(II)-[2-methylimidazolate] frameworks in aqueous media PLoS One 10 e0128436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pachfule P, Das R, Poddar P and Banerjee R 2011 Solvothermal synthesis, structure, and Properties of metal organic framework isomers derived from a partially fluorinated link Cryst. Growth Des. 11 1215

    Article  CAS  Google Scholar 

  27. Nune S K, Thallapally P K, Dohnalkova A, Wang C, Liu J and Exarhos G J 2010 Synthesis and properties of nano zeolitic imidazolate frameworks Chem. Commun. 46 4878

    Article  CAS  Google Scholar 

  28. Zhan G and Zeng H C 2016 Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters Chem. Commun. 53 72

    Article  CAS  Google Scholar 

  29. Lee Y-R, Jang M-S, Cho H-Y, Kwon H-J, Kim S and Ahn W-S 2015 ZIF-8: A comparison of synthesis methods Chem. Eng. J. 271 276

    Article  CAS  Google Scholar 

  30. Kabtamu D M, Wu Y N and Li F T 2020 Hierarchically porous metal-organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination J. Hazard. Mater. 397 28

    Article  CAS  Google Scholar 

  31. Wang S, Fan Y and Jia X 2014 Sodium dodecyl sulfate-assisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline Chem. Eng. J. 256 14

    Article  CAS  Google Scholar 

  32. Gee J A, Chung J, Nair S and Sholl D S 2013 Adsorption and Diffusion of Small Alcohols in Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-90 J. Phys. Chem. C 117 3169

    Article  CAS  Google Scholar 

  33. Yao J, He M and Wang H 2015 Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks CrystEngComm 17 4970

    Article  CAS  Google Scholar 

  34. Jung B K, Jun J W, Hasan Z and Jhung S H 2015 Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8 Chem. Eng. J. 267 9

    Article  CAS  Google Scholar 

  35. Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M and Yaghi O M 2009 Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties J. Am. Chem. Soc. 131 3875

    Article  CAS  PubMed  Google Scholar 

  36. Liu C, Li T and Rosi N L 2012 Strain-promoted “click” modification of a mesoporous metal-organic framework J. Am. Chem. Soc. 134 18886

    Article  CAS  PubMed  Google Scholar 

  37. Fang Z, Durholt J P, Kauer M, Zhang W, Lochenie C, Jee B, et al. 2014 Structural complexity in metal-organic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers J. Am. Chem. Soc. 136 9627

    Article  CAS  PubMed  Google Scholar 

  38. Sun L B, Li J R, Park J and Zhou H C 2012 Cooperative template-directed assembly of mesoporous metal-organic frameworks J. Am. Chem. Soc. 134 126

    Article  CAS  PubMed  Google Scholar 

  39. Qiu L G, Xu T, Li Z Q, Wang W, Wu Y, Jiang X, et al. 2008 Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity Angew. Chem. Int. Edit. 47 9487

    Article  CAS  Google Scholar 

  40. Tan X, Zhang J, Luo T, Sang X, Liu C, Zhang B, et al. 2016 Micellization of long-chain ionic liquids in deep eutectic solvents Soft Matter. 12 5297

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y N, Zhou M, Zhang B, Wu B, Li J, Qiao J, et al. 2014 Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal Nanoscale 6 1105

    Article  CAS  PubMed  Google Scholar 

  42. Yao J F, Chen R Z, Wang K and Wang H T 2013 Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels Micropor. Mesopor. Mat. 165 200

    Article  CAS  Google Scholar 

  43. Wang Y S, Xu Y P, Li D W, Liu H, Li X L, Tao S and Tian Z J 2015 Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism Chin. J. Catal. 36 855

    Article  CAS  Google Scholar 

  44. He M, Yao J F, Liu Q, Wang K, Chen F Y and Wang H T 2014 Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution Micropor. Mesopor. Mat. 184 55

    Article  CAS  Google Scholar 

  45. Hu Y, Kazemian H, Rohani S, Huang Y N and Song Y 2011 In situ high pressure study of ZIF-8 by FTIR spectroscopy Chem. Commun. 47 12694

    Article  CAS  Google Scholar 

  46. Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, et al. 2006 Exceptional chemical and thermal stability of zeolitic imidazolate frameworks P. Natl. Acad. Sci. USA 103 10186

    Article  CAS  Google Scholar 

  47. Gross A F, Sherman E and Vajo J J 2012 Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks Dalton. Trans. 41 5458

    Article  CAS  Google Scholar 

  48. Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J and Gu J 2015 Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67 ACS Appl. Mater. Inter. 7 223

    Article  CAS  Google Scholar 

  49. Guan T, Li X, Fang W and Wu D 2020 Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups Appl. Surf. Sci. 501 144074

    Article  CAS  Google Scholar 

  50. Nehra M, Dilbaghi N, Singhal N K, Hassan A A, Kim K-H and Kumar S 2019 Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management Environ. Res. 169 229

    Article  CAS  PubMed  Google Scholar 

  51. Xie Q, Li Y, Lv Z, Zhou H, Yang X, Chen J and Guo H 2017 Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101 Sci. Rep. 7 3316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shams M, Dehghani M H, Nabizadeh R, Mesdaghinia A, Alimohammadi M and Najafpoor A A 2016 Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: Modeling, mechanical agitation versus sonication J. Mol. Liq. 224 151

    Article  CAS  Google Scholar 

  53. Mazloomi S, Yousefi M, Nourmoradi H and Shams M 2019 Evaluation of phosphate removal from aqueous solution using metal organic framework; isotherm, kinetic and thermodynamic study J. Environ. Health Sci. 17 209

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Talents Introduction Foundation of Nanjing Institute of Technology (No. YKJ202032 and YKJ201936). This research was also supported by the Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology (No. GC202106) and the Dean/Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (No. 2021K008). The authors would also gratefully acknowledge the support from the Natural Science Research Projects of Universities in Jiangsu Province (No. 20KJB530005) and the Science Foundation of Nanjing Institute of Technology (No. CXY201926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Chen, C., Wang, X. et al. ZIF-8 prepared in ionic liquid microemulsions for efficient capture of phosphate from water. J Chem Sci 134, 62 (2022). https://doi.org/10.1007/s12039-022-02058-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02058-w

Keywords

Navigation