Skip to main content

Synthesis and physicochemical characterization of PMMA and PNIPAM based block copolymers by using PEG based macro RAFT agents

Abstract

Polyethylene glycol (PEG) based macro-RAFT agents were synthesized by the condensation reaction of PEG (Mn: 2000 Da and 8000 Da) with the carboxylic acid functionalized trithiocarbonate [S-Dodecyl-S′-(α,α′-dimethyl-α″-acetic acid) tritiocarbonate (DDMAT)] using dicyclohexylcarbodiimide (DCC)/4-(dimethylamino) pyridine (DMAP) as catalyst at room temperature. Then, N-isopropylacrylamide (NIPAM) and methyl methacrylate (MMA) monomers were polymerized, respectively, using synthesized new macro-RAFT agents and N, N′-azo bis isobutyronitrile (AIBN) as the initiator. In all RAFT polymerizations, dispersity values were found in the range of 1.04 to 1.47, which showed that RAFT polymerization was applied successfully. The synthesized polymers were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), Gel Permeation Chromatography (GPC) and Differential Scanning Calorimetry (DSC) techniques. The fractured surface images of PEG-b-PMMA block copolymers were obtained by Scanning Electron Microscopy (SEM). SEM images PEG-b-PMMA block copolymers have shown that the copolymers have a microporous structure. In addition, the swelling ratios and LCST values of the PEG-b-PNIPAM block copolymers were measured which were found to be very high. The lower critical temperature values of the copolymers are closer to that of the PNIPAM homopolymer, 32 °C, indicating its usability in drug delivery systems.

Graphical abstract

Macro-RAFT agents were successfully synthesized in high yield by reacting S-dodecyl-S′-(α,α′-dimethyl-α″-acetic acid) tritiocarbonate (DDMAT) (R-2) with polyethylene glycols (Mn: 2000 Da and 8000 Da, respectively). Subsequently, the monomers methyl methacrylate (MMA) and N-isopropylacrylamide (NIPAM) were polymerized respectively using synthesized macro-RAFT agents. SEM images of PEG-b-PMMA block copolymers have shown that the copolymers have a microporous structure. The critical temperature values of the PEG-b-PNIPAM block copolymers are closer to that of the PNIPAM homopolymer, 32 °C, indicating their usability in drug delivery systems.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Wang J S and Matyjaszewski K 1995 Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes J. Am. Chem. Soc. 117 5614

    CAS  Article  Google Scholar 

  2. Matyjaszewski K and Gaynor S G 1997 Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 3. Effect of Reaction Conditions on the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)Oxy)Ethyl Acrylate Macromolecules 30 7042

    CAS  Article  Google Scholar 

  3. Arslan H, Yeşilyurt N and Hazer B 2007 The Synthesis of Poly(3-Hydroxybutyrate)-g-poly(Methylmethacrylate) Brush Type Graft Copolymers by Atom Transfer Radical Polymerization Method J. Appl. Polym. Sci. 106 1742

    CAS  Article  Google Scholar 

  4. Allı S, Allı A and Hazer B 2012 Hyperbranched Homo and Thermoresponsive Graft Copolymers by Using ATRP-Macromonomer Initiators J. Appl. Polym. Sci. 124 536

    Article  CAS  Google Scholar 

  5. Allı A, Allı S, Becer C R and Hazer B 2016 Nitroxide-Mediated Copolymerization of Styrene and Pentafluorostyrene Initiated by Polymeric Linoleic Acid Eur. J. Lipid Sci. Technol. 118 279

    Article  CAS  Google Scholar 

  6. Feng H, Lu X, Wang W, Kang N G and Mays J W 2017 Block Copolymers: Synthesis Self-Assembly, and Applications Polymers 9 494

    Article  CAS  PubMed Central  Google Scholar 

  7. Grubbs R B 2011 Nitroxide-Mediated Radical Polymerization: Limitations and Versatility Polym. Rev. 51 104

    CAS  Article  Google Scholar 

  8. Chiefari J, Chong Y K B, Ercole F, Krstina J, Jeffery J, Le T P T, et al. 1998 Living Free-Radical Polymerization by reversible Addition-Fragmentation Chain Transfer: The RAFT Process Macromolecules 31 5559

    CAS  Article  Google Scholar 

  9. Chong B Y K, Le T P T, Moad G, Rizzardo E and Thang S H 1999 A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process Macromolecules 32 2071

    CAS  Article  Google Scholar 

  10. Lai J T, Filla D and Shea R 2002 Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents Macromolecules 35 675411

    Google Scholar 

  11. Arslan H 2012 Block and Graft Copolymerization by Controlled/Living Radical Polymerization Methods. In Polymerization De Souza Gomes, A., Ed. InTech. pp. 279

  12. Abdelhamid D, Arslan H, Zhang Y and Uhrich K E 2014 Role of Branching of Hydrophilic Domain on Physicochemical Properties of Amphiphilic Macromolecules Polym. Chem. 5 1457

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Chiefari J, Mayadunne R T, Moad C L, Moad G, Rizzardo E, Postma A A, et al. 2003 Thiocarbonylthio Compounds (S=C(Z)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z Macromolecules 36 2273

    CAS  Article  Google Scholar 

  14. Moad G, Rizzardo E and Thang S H 2008 Radical Addition-Fragmentation Chemistry in Polymer Synthesis Polymer 49 1079

    CAS  Article  Google Scholar 

  15. Moad G, Rizzardo E and Thang S H 2005 Living Radical Polymerization by the RAFT Process Aust. J. Chem. 58 379

    CAS  Article  Google Scholar 

  16. Vasilieva Y A, Scales C W, Thomas D B, Ezell R G, Lowe A B, Ayres N and McCormick C L 2005 Controlled/Living Polymerization of Methacrylamide in Aqueous Media via the RAFT Process J. Polym. Sci. Part A Polym. Chem. 43 3141

    CAS  Article  Google Scholar 

  17. Lu L, Zhang H, Yang N and Cai Y 2006 Toward Rapid and Well-Controlled Ambient Temperature RAFT Polymerization under UV - Vis Radiation: Effect of Radiation Wave Range Macromolecules 39 3770

    CAS  Article  Google Scholar 

  18. Stamenović M M, Espeel P, Camp W V and Du Prez F E 2011 Norbornenyl-Based RAFT Agents for the Preparation of Functional Polymers via Thiol-Ene Chemistry Macromolecules 44 5619

    Article  CAS  Google Scholar 

  19. Rowe-Konopacki M D and Boyes S G 2007 Synthesis of Surface Initiated Diblock Copolymer Brushes from Flat Silicon Substrates Utilizing the RAFT Polymerization Technique Macromolecules 40 879

    CAS  Article  Google Scholar 

  20. Kim J S, Jeon H J, Lee K M, Im J N and Youk J H 2010 Dispersion Polymerization of Acrylonitrile Using a Poly(Ethylene Glycol)-b-Polyacrylonitrile Macro-RAFT Agent Fibers Polym. 11 153

    CAS  Article  Google Scholar 

  21. Öztürk T, Göktaş M and Hazer B 2010 Synthesis and Characterization of Poly(Methyl Methacrylate-Block-Ethylene Glycol-Block-Methyl Methacrylate) Block Copolymers by Reversible Addition-Fragmentation Chain Transfer Polymerization J. Macromol. Sci. Part A Pure App. Chem. 48 65

    Article  CAS  Google Scholar 

  22. Göktaş M, Öztürk T, Atalar M N, Tekeş A T and Hazer B 2014 One-Step Synthesis of Triblock Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer (RAFT) and Ring-Opening Polymerization Using a Novel Difunctional Macro-RAFT Agent Based on Polyethylene Glycol J. Macromol. Sci. Part A Pure Appl. Chem. 51 854

    Article  CAS  Google Scholar 

  23. Öztürk T, Atalar M N, Göktaş M and Hazer B 2013 One-Step Synthesis of Block-Graft Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer and Ring-Opening Polymerization Using a Novel Macroinitiator J. Polym. Sci. Part A Polym. Chem. 51 2651

    Article  CAS  Google Scholar 

  24. Öztürk T, Kayǧin O, Göktaş M and Hazer B 2016 Synthesis and Characterization of Graft Copolymers Based on Polyepichlorohydrin via Reversible Addition-Fragmentation Chain Transfer Polymerization J. Macromol. Sci. Part A Pure Appl. Chem. 53 362

    Article  CAS  Google Scholar 

  25. Boyes S G, Granville A M, Baum M, Akgun B, Mirous B K and Brittain W J 2004 Polymer Brushes - Surface Immobilized Polymers Surf. Sci. 570 1

    CAS  Article  Google Scholar 

  26. Lowe A B and McCormick C L 2001 Stimuli Responsive Water-Soluble and Amphiphilic (Co)Polymers ACS Symp. Ser. 780 1

    CAS  Google Scholar 

  27. Toraman T and Hazer B 2014 Synthesis and Characterization of the Novel Thermoresponsive Conjugates Based on Poly(3-Hydroxy Alkanoates) J. Polym. Environ. 22 159

    CAS  Article  Google Scholar 

  28. Şanal T, Oruç O, Öztürk T and Hazer B 2015 Synthesis of PH- and Thermo-Responsive Poly (ε-Caprolactone-b-4-Vinyl Benzyl-g-Dimethyl Amino Ethyl Methacrylate) Brush Type Graft Copolymers via RAFT Polymerization J. Polym. Res. 22 2

    Article  CAS  Google Scholar 

  29. Stenzel M H 2008 RAFT Polymerization: An Avenue to Functional Polymeric Micelles for Drug Delivery Chem. Commun. 30 3486

    Article  CAS  Google Scholar 

  30. York A W, Kirkland S E and McCormick C L 2008 Advances in the Synthesis of Amphiphilic Block Copolymers via RAFT Polymerization: Stimuli-Responsive Drug and Gene Delivery Adv. Drug Deliv. Rev. 60 1018

    CAS  PubMed  Article  Google Scholar 

  31. Shi P, Zhou H, Gao C, Wang S, Sun P and Zhang W 2015 Macro-RAFT Agent Mediated Dispersion Copolymerization: A Small Amount of Solvophilic Co-Monomer Leads to a Great Change Polym. Chem. 6 4911

    CAS  Article  Google Scholar 

  32. Zhu L, Powell S and Boyes S G 2015 Synthesis of Tertiary Amine-Based PH-Responsive Polymers by RAFT Polymerization J. Polym. Sci. Part A Polym. Chem. 53 1010

    CAS  Article  Google Scholar 

  33. Palao-Suay R, Aguilar MR, Parra-Ruiz F J, Maji S, Hoogenboom R, Rohner N A, et al. 2016 α-TOS-Based RAFT Block Copolymers and Their NPs for the Treatment of Cancer Polym. Chem. 7 838

    CAS  PubMed  Article  Google Scholar 

  34. Gao C, Liu C, Zhou H, Wang S and Zhang W 2016 In Situ Synthesis of Nano-Assemblies of the High Molecular Weight Ferrocene-Containing Block Copolymer via Dispersion RAFT Polymerizatio J. Polym. Sci. Part A Polym. Chem. 54 900

    CAS  Article  Google Scholar 

  35. Zhou H, Liu C, Gao C, Qu Y, Shi K and Zhang W 2016 Polymerization-Induced Self-Assembly of Block Copolymer through Dispersion RAFT Polymerization in Ionic Liquid J. Polym. Sci. Part A Polym. Chem. 54 1517

    CAS  Article  Google Scholar 

  36. Qian W, Song X, Feng C, Xu P, Jiang X, Li Y and Huang X 2016 Construction of PEG-Based Amphiphilic Brush Polymers Bearing Hydrophobic Poly(Lactic Acid) Side Chains: Via Successive RAFT Polymerization and ROP Polym. Chem. 7 3300

    CAS  Article  Google Scholar 

  37. Fang F, Kong F, Zhang X, Lin M, Zhang Y and Ding S 2017 Enhanced Emission from Alq3 in Amphiphilic Block Copolymers PEG-b-PVK-Co-Alq3 Synthesized via RAFT Polymerization J. Appl. Polym. Sci. 134 1

    Google Scholar 

  38. Ahmadkhani L, Abbasian M and Akbarzadeh A 2017 Synthesis of Sharply Thermo and PH Responsive PMA-b-PNIPAM-b-PEGB-PNIPAM-b-PMA by RAFT Radical Polymerization and Its Schizophrenic Micellization in Aqueous Solutions Des. Monomers Polym. 20 406

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Penfold N J W, Whatley J R and Armes S P 2019 Thermoreversible Block Copolymer Worm Gels Using Binary Mixtures of PEG Stabilizer Blocks Macromolecules 52 1653

    CAS  Article  Google Scholar 

  40. Yin W, Ke W, Chen W, Xi L, Zhou Q, Mukerabigwi J F and Ge Z 2019 Integrated Block Copolymer Prodrug Nanoparticles for Combination of Tumor Oxidative Stress Amplification and ROS-Responsive Drug Release Biomaterials 195 63

    CAS  PubMed  Article  Google Scholar 

  41. Xian C, Yuan Q, Bao Z, Liu G and Wu J 2020 Progress on Intelligent Hydrogels Based on RAFT Polymerization: Design Strategy, Fabrication and the Applications for Controlled Drug Delivery Chin. Chem. Lett. 31 19

    CAS  Article  Google Scholar 

  42. Shim M S and Kwon Y J 2012 Stimuli-Responsive Polymers and Nanomaterials for Gene Delivery and Imaging Applications Adv. Drug Deliv. Rev. 64 1046

    CAS  PubMed  Article  Google Scholar 

  43. Cabane E, Zhang X, Langowska K, Palivan C G and Meier W 2012 Stimuli-Responsive Polymers and Their Applications in Nanomedicine Biointerphases 7 1

    Article  CAS  Google Scholar 

  44. Hu J, Meng H, Li G and Ibekwe S I 2012 A Review of Stimuli-Responsive Polymers for Smart Textile Applications Smart Mater. Struct. 21 053001

    Article  CAS  Google Scholar 

  45. Dimitrov I, Trzebicka B, Müller A H E, Dworak A and Tsvetanov C B 2007 Thermosensitive Water-Soluble Copolymers with Doubly Responsive Reversibly Interacting Entities Prog Polym. Sci. 32 1275

    CAS  Article  Google Scholar 

  46. Smith A E, Xu X and McCormick C L 2010 Stimuli-Responsive Amphiphilic (Co)Polymers via RAFT Polymerization Prog. Polym. Sci. 35 45

    CAS  Article  Google Scholar 

  47. Lowe A B and McCormick C L 2000 Stimuli-responsive water soluble and amphiphilic polymers A.C.S. Symp. 780 1

    Google Scholar 

  48. Qiu Y and Park K 2001 Environment-Sensitive Hydrogels for Drug Delivery Adv. Drug Deliv. Rev. 53 321

    CAS  PubMed  Article  Google Scholar 

  49. Alli A and Hazer B 2008 Poly(N-Isopropylacrylamide) Thermoresponsive Cross-Linked Conjugates Containing Polymeric Soybean Oil and/or Polypropylene Glycol Eur. Polym. J. 44 1701

    CAS  Article  Google Scholar 

  50. Zhang Q, Ye J, Lu Y, Nie T, Xie D, Song Q, et al. 2008 Synthesis, Folding, and Association of Long Multiblock (PEO 23-b-PNIPAM124)750 Chains in Aqueous Solutions Macromolecules 41 2228

    CAS  Article  Google Scholar 

  51. Gines J M, Arias M J, Rabasco M, Novák C, Ruiz-Conde A and Sánchez-Soto P J 1996 Thermal Characterization of Polyethylene Glycols Applied in the Pharmaceutical Technology Using Differential Scanning Calorimetry and Hot Stage Microscopy J. Therm. Anal. 46 291

    CAS  Article  Google Scholar 

  52. Sousa R G, Magalhães W F and Freitas R F S 1998 Glass Transition and Thermal Stability of Poly(N-Isopropylacrylamide) Gels and Some of Their Copolymers with Acrylamide Polym. Degrad. Stab. 61 275

    CAS  Article  Google Scholar 

  53. Biswas C S, Patel V K, Vishwakarma N K, Tiwari V K, Maiti B, Maiti P, et al. 2011 Effects of Tacticity and Molecular Weight of Poly(N-Isopropylacrylamide) on Its Glass Transition Temperature Macromolecules 44 5822

    CAS  Article  Google Scholar 

  54. Hazer B, Ayyıldız E and Bahadır F 2017 Synthesis of PNIPAM–PEG Double Hydrophilic Polymers Using Oleic Acid Macro Peroxide Initiator J. Am. Oil Chem. Soc. 94 1141

    CAS  Article  Google Scholar 

  55. Izunobi J U and Higginbotham C L 2011 Polymer Molecular Weight Analysis by 1H NMR Spectroscopy J. Chem. Educ. 88 1098

    CAS  Article  Google Scholar 

  56. Buckley C P and Kovacs A J 1975 Melting Behaviour of Low Molecular Weight Poly (Ethylene-Oxide) Fractions I. Extended Chain Crystals Progr. Colloid Polym. Sci. 58 44

    Article  Google Scholar 

  57. Nagarajan S and Srinivasan K S V 1997 Block Copolymerization of Poly(Ethylene Glycol) with Methyl Methacrylate Using Redox Macroinitiators Angew. Makromol. Chemie 245 9

    CAS  Article  Google Scholar 

  58. Unger R, Reuter H, Haring S and Donth E 1990 Comparison of Poly(Ethylene Oxide) Melt Crystallization in Blend and Block Copolymer Systems with Poly(Methyl Methacrylate) and Poly(Tert-Butyl Methacrylate) Polym. Plast. Technol. Eng. 29 1

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Bülent Ecevit University Research Fund, Turkey (BAP project no: 2016-72118496-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Alli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in writing upon submission of the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senemoğlu, Y., Hazer, B., Arslan, H. et al. Synthesis and physicochemical characterization of PMMA and PNIPAM based block copolymers by using PEG based macro RAFT agents. J Chem Sci 134, 49 (2022). https://doi.org/10.1007/s12039-022-02047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02047-z

Keywords

  • RAFT polymerization
  • PEG based macro-RAFT agent
  • Amphiphilic block
  • Thermoresponsive block copolymer