Skip to main content
Log in

Supramolecular self-assembly based on Cucurbit[8]urils with sulfanilamide and sulfamethoxazole

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this study, cucurbit[8]uril (Q[8]) was used as a carrier for Sulfanilamide (G1) and sulfamethoxazole (G2), and the crystals of their inclusion complexes were cultured in a 3M HCl aqueous solution upon the addition of ZnCl2 as an inducer. The crystal structure was characterized using single-crystal X-ray diffraction. The results showed that two new supramolecular self-assemblies were constructed and the main driving forces in the system were hydrogen bond and ion–dipole interactions. In addition, the effects of Q[8] on the solubility and cumulative release rate in vitro of G1 and G2 were investigated by UV Vis spectroscopy. The results showed that the intervention of Q[8] had no effect on the solubility of G1 and G2; the cumulative release rates of G1 and G2 in artificial gastrointestinal juice were reduced and had a certain sustained-release effect.

Graphical abstract

In this study, we reported that Cucurbit[8]uril (Q[8]) was used as the carrier of P-aminobenzenesulfonamide and sulfamethoxazole. The experimental results show that the main driving forces of the system are hydrogen bond and ion-dipole interaction and two new supramolecular self-assemblers were constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Supplementary Information (SI)

The X-ray crystallographic data for structures reported in this study have been deposited in the Cambridge Crystallographic Data Center under accession numbers CCDC: 2071851 (1) and 2039124 (2). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Ogoshi T, Yamagishi T and Nakamoto Y 2016 Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry Chem. Rev. 116 7937

    Article  CAS  PubMed  Google Scholar 

  2. Yang W, Greenaway A and Lin X 2010 Exceptional thermal stability in a supramolecular organic framework: porosity and gas storage J. Am. Chem. Soc. 132 14457

    Article  CAS  PubMed  Google Scholar 

  3. Tian J, Wang H and Zhang D W 2017 Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water Natl. Sci. Rev. 4 426

    Article  CAS  Google Scholar 

  4. Lagona J, Mukhopadhyay P and Chakrabarti S 2005 The cucurbit[n]uril family Angew. Chem. Int. Ed. 44 4844

    Article  CAS  Google Scholar 

  5. Lee J W, Samal S and Selvapalam N 2003 Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry Acc. Chem Res. 36 621

    Article  CAS  PubMed  Google Scholar 

  6. Gerasko O A, Samsonenko D G and Fedin V P 2002 Supramolecular chemistry of cucurbiturils Russian Chem Rev. 71 741

    Article  CAS  Google Scholar 

  7. Elemans J A A W, Rowan A E and Nolte R J M 2000 Self-assembled architectures from glycoluril Ind. Eng. Chem. Res. 39 3419

    Article  CAS  Google Scholar 

  8. Cintas P 1994 Cucurbituril: supramolecular perspectives for an old ligand J. Incl. Phenom. Macro. 17 205

    Article  CAS  Google Scholar 

  9. Yang R Y, Deng X Y and Huang Y 2020 Recognition of lanthanide metal cations by t-DSMI@Alkyl-substituted cucurbit[6]uril probes Chem. Select 5 8649

    CAS  Google Scholar 

  10. Lin R L, Li R and Shi H 2020 Symmetrical-tetramethyl-cucurbit[6]uril-driven movement of cucurbit[7]uril gives rise to heterowheel [4]pseudorotaxanes J. Org. Chem. 85 3568

    Article  CAS  PubMed  Google Scholar 

  11. Jansen K, Buschmann H J and Wego A 2001 Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril. Synthesis, solubility and amine complex formation J. Incl. Phenom. Macro. 39 357

    Article  CAS  Google Scholar 

  12. Freeman W A, Mock W L and Shih N Y 1981 Cucurbituril J. Am. Chem. Soc. 103 7367

    Article  CAS  Google Scholar 

  13. Xu H P, Lin D and Zhang B 2020 Supramolecular self-assembly of a hybrid “hyalurosome” for targeted photothermal therapy in non-small cell lung cancer Drug Deliv. 27 378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Day A I, Blanch R J and Arnold A P 2002 A cucurbituril-based gyroscane: a new supramolecular form Angew. Chem. Int. Ed. 41 275

    Article  CAS  Google Scholar 

  15. Kim J, Jung I S and Kim S Y 2000 New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8) J. Am. Chem. Soc. 122 540

    Article  CAS  Google Scholar 

  16. Lutz F, Parodi N L and Schmidt T C 2021 Heteroternary cucurbit[8]uril complexes as supramolecular scaffolds for self-assembled bifunctional photoredoxcatalysts Chem. Commun. 57 2887

    Article  CAS  Google Scholar 

  17. Behrend R, Meyer F and Rusche F 1905 Ueber condensationsproducte aus glycoluril und formaldehyd Just Liebigs Ann. Chem. 339 1

    Article  Google Scholar 

  18. Kim K, Selvapalam N and Oh D H 2004 Cucurbiturils a new family of host molecules J. Incl. Phenom. Macro. 50 31

    Article  CAS  Google Scholar 

  19. Day A, Arnold A P and Blanch R J 2001 Controlling factors in the synthesis of cucurbituril and its homologues J. Org. Chem. 66 8094

    Article  CAS  PubMed  Google Scholar 

  20. Liu S, Zavalij P Y and Isaacs L 2005 Cucurbit[10]uril J. Am. Chem. Soc. 127 16798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng X J, Liang L L and Chen K 2013 Twisted cucurbit[14]uril Angew. Chem. Int. Edit. 52 7252

    Article  CAS  Google Scholar 

  22. Cao X H, Gao A P and Hou J T 2021 Fluorescent supramolecular self-assembly gels and their application as sensors: a review Coord. Chem. Rev. 434 213792

    Article  CAS  Google Scholar 

  23. Zheng J, Zhao W W and Meng Y 2021 Supramolecular self-assembly of cyclopentyl-substituted cucurbit[n ]uril with Fe 3+, Fe 2+, and HClO 4 based on outer surface interaction cryst Res. Technol. 56 2000183

    Article  CAS  Google Scholar 

  24. Lewis J and Wilkins R G 1951 Coordination chemistry Nature 167 434

    Article  Google Scholar 

  25. Hahn F E and Mareike C 2008 Heterocyclic carbenes: synthesis and coordination chemistry Angew. Chem. Int. Edit. 47 3122

    Article  CAS  Google Scholar 

  26. Ni X L, Xue S F and Tao Z 2015 Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils Coord. Chem. Rev. 287 89

    Article  CAS  Google Scholar 

  27. Xie J, Zeng Z S and Tao Z 2020 Study on the interaction and properties of cucurbit[8]uril with oroxin B Chem. Res. Chin. U. 36 804

    Article  CAS  Google Scholar 

  28. Dwi H, Fuad A K M and Khairul A 2021 Assessing encapsulation of curcumin in cocoliposome: in vitro study Open Chem. 19 358

    Article  Google Scholar 

  29. Hettiarachchi G, Nguyen D and Wu J 2010 Toxicology and drug delivery by cucurbit[n]uril type molecular containers PLOS ONE 5 e10514

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cao L P, Hettiarachchi G and Briken V 2013 Cucurbit[7]uril containers for targeted delivery of oxaliplatin to cancer cells Angew. Chem. Int. Edit. 52 12033

    Article  CAS  Google Scholar 

  31. Mccammon J A 1998 Theory of biomolecular recognition Curr. Opin. Struct. Bio. 8 245

    Article  CAS  Google Scholar 

  32. Nguyen C N, Young T K and Gilson M K 2012 Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril J. Chem. Phys. 137 044101

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ganapati S and Isaacs L 2018 Acyclic cucurbit[n]uril-type receptors: preparation, molecular recognition properties and biological applications Isr. J. Chem. 58 250

    Article  CAS  PubMed  Google Scholar 

  34. Andrea S, Takashi O and Antonio M 2003 Anticancer and antiviral sulfonamides Curr. Med. Chem. 10 925

    Article  Google Scholar 

  35. Khan F A, Mushtaq S and Naz S 2018 Sulfonamides as potential bioactive scaffolds Curr. Org. Chem. 22 818

    Article  CAS  Google Scholar 

  36. Zhang L, Johnson N W and Liu Y 2021 Biodegradation mechanisms of sulfonamides by phanerochaete chrysosporium – luffa fiber system revealed at the transcriptome level Chemosphere 266 129124

    Article  Google Scholar 

  37. Buschmann H J, Cleve E and Jansen K 2001 Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution J. Incl. Phenom. Macro. 40 117

    Article  CAS  Google Scholar 

  38. Zhao Y J, Bali M S and Cullinane C 2009 Synthesis, cytotoxicity and cucurbituril binding of triamine linked dinuclear platinum complexes Dalton Trans. 26 5190

    Article  Google Scholar 

  39. Huang J J, Xu Z L and Lian X W 2018 The host-guest interaction between Q[8] and baicalin, its effect on the properties of baicalin Chem. J. Chin. U. 39 2425

    CAS  Google Scholar 

  40. Zeng Z S, Xie J, Luo G Y, Tao Z and Zhang Q 2020 Host–guest interaction of cucurbit[8]uril with oroxin A and its effect on the properties of oroxin A Beilstein J. Org. Chem. 16 2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Z L, Lian X W and Li M J 2017 Effects of inclusion of chrysin in cucurbit[8]uril on its stability, solubility and antioxidant potential Chem. Res. Chin. U. 33 736

    Article  CAS  Google Scholar 

  42. Mehta S K, Jindal N and Kaur G 2011 Quantitative investigation, stability and in vitro release studies of anti-TB drugs in triton niosomes Colloid Surf. B 87 173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Science and Technology Support Plan of Guizhou Province [Guizhou Science and Technology Cooperation Support(2020) 4Y218].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianjun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zheng, J., Zeng, Z. et al. Supramolecular self-assembly based on Cucurbit[8]urils with sulfanilamide and sulfamethoxazole. J Chem Sci 134, 26 (2022). https://doi.org/10.1007/s12039-021-02017-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-02017-x

Keywords

Navigation