Skip to main content
Log in

Role of the weak noncovalent interactions in the stability of the aggregated protonated dopamine in the aqueous solution: spectroscopic and quantum chemical calculation studies

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The conformational state and noncovalent interaction of protonated dopamine (p-dopamine) play an important role in its key and lock binding with its receptors. Hence, understanding of the role of weak noncovalent interactions in the stability of the higher order structures of the p-dopamine is desired. In this study, we have combined the spectroscopic and quantum chemical calculation studies to understand the role of noncovalent interactions in the stability of the dimers and trimers of p-dopamine in the aqueous medium. The intensity of the UV–Visible spectra of p-dopamine increases and shows a red shift with increasing concentrations suggesting the presence of the higher order structures of p-dopamine in the aqueous medium. The quantum chemical calculations and AIM studies of the different structures of its dimer and trimers suggest the presence of N–H3+π, C–Hπ, ππ weak interactions along with conventional N–HO hydrogen bond. The calculated peak positions of the UV–Visible spectra of different clusters show that the higher order of clusters show red shifted peak position compared to the monomer and the red shifted peak is more evident in the clusters having noncovalent interactions.

Graphical abstract

Weak noncovalent interactions stabilise higher order clusters of protonated dopamine leading to red shift in the UV-visible spectra as shown by quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Korshunov K S, Blakemore L J and Trombley P Q 2017 Dopamine: a modulator of circadian rhythms in the central nervous system Front. Cell. Neurosci. 11 91

    Article  Google Scholar 

  2. Jaber M, Robinson S W, Missale C and Caron M G 1996 Dopamine receptors and brain function Neuropharmacology 35 1503

    Article  CAS  Google Scholar 

  3. Lot T Y 1993 Mechanisms of action of dopamine in the peripheral nervous system of chicks and rats J. Pharm. Pharmacol. 45 896

    Article  CAS  Google Scholar 

  4. Rubí B and Maechler P 2010 Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance Endocrinology 151 5570

    Article  Google Scholar 

  5. Murty V P, Tompary A, Adcock R A and Davachi L 2017 Selectivity in postencoding connectivity with high-level visual cortex is associated with reward-motivated memory J. Neurosci. 37 537

    Article  CAS  Google Scholar 

  6. Alcaro A, Huber R and Panksepp J 2007 Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective Brain Res. Rev. 56 283

    Article  CAS  Google Scholar 

  7. Marsden C A 2006 Dopamine: the rewarding years Br. J. Pharmacol. 147(Suppl 1) S136

    Article  CAS  Google Scholar 

  8. Thorp J, Clewett D and Riegel M 2020 Two routes to incidental memory under arousal: dopamine and norepinephrine J. Neurosci. 40 1790

    Article  CAS  Google Scholar 

  9. Burbulla L F, Song P, Mazzulli J R, Zampese E, Wong Y C, Jeon S, et al. 2017 Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease Science 357 1255

    Article  CAS  Google Scholar 

  10. Surmeier D J, Obeso J A and Halliday G M 2017 Selective neuronal vulnerability in Parkinson disease Nat. Rev. Neurosci. 18 101

    Article  CAS  Google Scholar 

  11. Meisenzahl E M, Schmitt G J, Scheuerecker J and Möller H J 2007 The role of dopamine for the pathophysiology of schizophrenia Int. Rev. Psychiatry 19 337

    Article  CAS  Google Scholar 

  12. Cabezas C, Peña I, López J C and Alonso J L 2013 Seven conformers of neutral dopamine revealed in the gas phase J. Phys. Chem. Lett. 4 486

    Article  CAS  Google Scholar 

  13. Urban J J, Cronin C W, Roberts R R and Famini G R 1997 Conformational preferences of 2-phenethylamines: A computational study of substituent and solvent effects on the intramolecular amine−aryl interactions in charged and neutral 2-phenethylamines J. Am. Chem. Soc. 119 12292

    Article  CAS  Google Scholar 

  14. Fausto R, Ribeiro M J S and de Lima J J P 1999 A molecular orbital study on the conformational properties of dopamine [1,2-benzenediol-4(2-aminoethyl)] and dopamine cation J. Mol. Struct. 484 181

    Article  CAS  Google Scholar 

  15. Callear S K, Johnston A, McLain S E and Imberti S 2015 Conformation and interactions of dopamine hydrochloride in solution J. Chem. Phys. 142 014502

  16. Bustard T M and Egan R S 1971 The conformation of dopamine hydrochloride Tetrahedron 27 4457

    Article  CAS  Google Scholar 

  17. Bergin R and Carlstrom D 1968 The structure of the catecholamines: II: The crystal structure of dopamine hydrochloride Acta Cryst. B 24 1506

    Article  CAS  Google Scholar 

  18. Giesecke J 1980 Refinement of the structure of dopamine hydrochloride Acta Cryst. B 36 178

    Article  CAS  Google Scholar 

  19. Park S, Lee N S, Lee S J B and o T K C S, 2000 Vibrational analysis of dopamine neutral base based on density functional force field Bull. Korean Chem. Soc. 21 1035

    Google Scholar 

  20. Lagutschenkov A, Langer J, Berden G, Oomens J and Dopfer O 2011 Infrared spectra of protonated neurotransmitters: dopamine Phys. Chem. Chem. Phys. 13 2815

    Article  CAS  Google Scholar 

  21. Zhai C, Ma H, Sun F, Li L and Song A 2016 Experimental and theoretical study on the interaction of dopamine hydrochloride with H2O J. Mol. Liq. 215 481

    Article  CAS  Google Scholar 

  22. Berfield J L, Wang L C and Reith M E 1999 Which form of dopamine is the substrate for the human dopamine transporter: the cationic or the uncharged species? J. Biol. Chem. 274 4876

    Article  CAS  Google Scholar 

  23. Granot J 1976 Nmr studies of catecholamines. Acid dissociation equilibria in aqueous solutions FEBS Lett. 67 271

  24. Solmajer P, Kocjan D and Solmajer T 1983 Conformational study of catecholamines in solution Z. Naturforsch. C 38 758

    Article  CAS  Google Scholar 

  25. Alagona G and Ghio C 1996 The effect of intramolecular H-bonds on the aqueous solution continuum description of the N-protonated form of dopamine Chem. Phys. 204 239

    Article  CAS  Google Scholar 

  26. Nagy P I, Alagona G and Ghio C 1999 Theoretical studies on the conformation of protonated dopamine in the gas phase and in aqueous solution J. Am. Chem. Soc. 121 4804

    Article  CAS  Google Scholar 

  27. de Moraes E E, Tonel M Z, Fagan S B and Barbosa M C 2019 Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface J. Mol. Model. 25 302

    Article  Google Scholar 

  28. Durdagi S, Salmas R E, Stein M, Yurtsever M and Seeman P 2016 Binding interactions of dopamine and apomorphine in D2high and D2low states of human dopamine D2 receptor using computational and experimental techniques ACS Chem. Neurosci. 7 185

    Article  CAS  Google Scholar 

  29. Bueschbell B, Barreto C A V, Preto A J, Schiedel A C and Moreira I S 2019 A complete assessment of dopamine receptor- ligand interactions through computational methods Molecules 24 1196

    Article  Google Scholar 

  30. Floresca C Z and Schetz J A 2004 Dopamine receptor microdomains involved in molecular recognition and the regulation of drug affinity and function J. Recept. Signal Transduct. Res. 24 207

    Article  CAS  Google Scholar 

  31. Salmas R E, Yurtsever M, Stein M and Durdagi S 2015 Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions Mol. Divers. 19 321

    Article  CAS  Google Scholar 

  32. Grimme S 2006 Semiempirical GGA-type density functional constructed with a long-range dispersion correction J. Comput. Chem. 27 1787

    Article  CAS  Google Scholar 

  33. Miertuš S, Scrocco E and Tomasi J 1981 Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects Chem. Phys. 55 117

  34. Dubinets N O, Safonov A A and Bagaturyants A A 2016 Structures and binding energies of the naphthalene dimer in its ground and excited states J. Phys. Chem. A 120 2779

    Article  CAS  Google Scholar 

  35. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B and Fox D J 2016 Gaussian 16 Rev. C.01 Wallingford CT

  36. Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press)

    Google Scholar 

  37. AIM2000 2001 J. Comput. Chem. 22 545

  38. Koch U and Popelier P L A 1995 Characterization of C-H-O hydrogen bonds on the basis of the charge density J. Phys. Chem. 99 9747

    Article  CAS  Google Scholar 

  39. Popelier P L A 1998 Characterization of a dihydrogen bond on the basis of the electron density J. Phys. Chem. A 102 1873

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Chandra Singh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, A., Singh, P.C. Role of the weak noncovalent interactions in the stability of the aggregated protonated dopamine in the aqueous solution: spectroscopic and quantum chemical calculation studies. J Chem Sci 134, 25 (2022). https://doi.org/10.1007/s12039-021-02014-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-02014-0

Keywords

Navigation