Skip to main content

Advertisement

Log in

Synthesis, structural, and DFT studies of mixed ligand copper(II) malonates

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The synthesis, spectra, electrochemical studies, single crystal structures and DFT studies of two new mixed ligand copper(II) malonates viz. [Cu(H2O)(bpy(OH)2)(mal)]·H2O 1 and [Cu(H2O)(dmp)(mal)]·2H2O 2 (bpy(OH)2) = 2,2′-bipyridine-6,6′-diol; dmp = 6,6′-dimethyl-1,10-phenanthroline; H2mal = malonic acid) are reported. The malonate, bpy(OH)2 (in 1), dmp (in 2) function as bidentate ligands in the distorted square pyramidal Cu(II) compounds while the aqua ligand occupies the axial site in 1. In contrast, one N of dmp occupies the axial site in 2. ESR studies reveal the distorted coordination geometry of Cu(II) in 1 and 2. Extensive hydrogen bonding (O−H⋅⋅⋅O and C−H⋅⋅⋅O) is observed between the malonate oxygens, oxygens of water and the monomeric Cu(II) species resulting in the formation of hydrogen bonded network structure in 1 and 2. The neutral monomeric Cu(II) species and lattice water molecules in 2 are linked via O−H⋅⋅⋅O hydrogen bond forming a water dimer. Both compounds exhibit π⋅⋅⋅π stacking and carbonyl(lp)⋅⋅⋅π interactions (in 2) stabilize the structure. DFT studies reveal stronger hydrogen bond energy for 2 compared to 1, while π⋅⋅⋅π stacking energy is larger in 1 than in 2 and carbonyl(lp)⋅⋅⋅π interactions in 2 are found to be moderate. In a series of five coordinated mixed ligand Cu(II) malonates, compound 2 exhibits maximum deviation of the {CuN2O3} polyhedron from square pyramidal towards trigonal bipyramidal geometry.

Graphic abstract

The supramolecular network structures of [Cu(H2O)(bpy(OH)2)(mal)]·H2O 1 and [Cu(H2O)(dmp)(mal)]·2H2O 2 are directed by O–H⋅⋅⋅O and C–H⋅⋅⋅O interactions. Additionally π⋅⋅⋅π stacking in 1 and π⋅⋅⋅π /carbonyl(lp)⋅⋅⋅π interactions in 2 contribute to the structure stabilization. 2 is an unique example showing severe distortion of the {CuN2O3} polyhedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J and Kim K 2000 A homochiral metal-organic porous material for enantioselective separation and catalysis Nature 404 982

    Article  CAS  PubMed  Google Scholar 

  2. Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T and Hupp J T 2009 Metal-organic framework materials as catalysts Chem. Soc. Rev. 38 1450

    Article  CAS  PubMed  Google Scholar 

  3. Düren T, Sarkisov L, Yaghi O M and Snurr R Q 2004 Design of new materials for methane storage Langmuir 20 2683

    Article  PubMed  CAS  Google Scholar 

  4. Chae H K, Siberio-Pérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, et al. 2004 A route to high surface area, porosity and inclusion of large molecules in crystals Nature 427 523

    Article  CAS  PubMed  Google Scholar 

  5. Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P and Hupp J T 2004 Metal-organic framework materials as chemical sensors Chem. Rev. 112 1105

    Article  CAS  Google Scholar 

  6. Ariga K, Mori T, Kitao T and Uemura T 2020 Supramolecular chiral nanoarchitectonics Adv. Mater. 32 1905657

    Article  CAS  Google Scholar 

  7. Tashiro S and Shionoya M 2020 Novel porous crystals with macrocycle-based well-defined molecular recognition sites Acc. Chem. Res. 53 632

    Article  CAS  PubMed  Google Scholar 

  8. Desiraju G R, Vittal J J and Ramanan A 2011 Crystal engineering, A Textbook(World Scientific: Singapore)

    Book  Google Scholar 

  9. Desiraju G R 1995 Supramolecular synthons in crystal engineering-a new organic synthesis Angew. Chem. Int. Ed. Engl. 34 2311

    Article  CAS  Google Scholar 

  10. Braga D, Grepioni F and Desiraju G R 1998 Crystal engineering and organometallic architecture Chem. Rev. 98 1375

    Article  CAS  PubMed  Google Scholar 

  11. Desiraju G R 2007 Crystal engineering: a holistic view Angew. Chem. Int. Ed. Engl. 46 8342

    Article  CAS  PubMed  Google Scholar 

  12. Desiraju G R 1997 Designer crystals: intermolecular interactions, network structures and supramolecular synthons Chem. Commun. 21 1475

    Article  Google Scholar 

  13. Deshpande M S, Kumbhar A S and Näther C 2010 Stabilization of acyclic water tetramer in a copper(II) malonate framework Structure Dalton Trans. 39 9146

    Article  CAS  PubMed  Google Scholar 

  14. Mitra M, Manna P, Seth S K, Das A, Meredith J, Helliwell M, et al. 2013 Salt-bridge–π (sb–π) interactions at work: associative interactions of sb–π, π–π and anion–π in Cu(ii)-malonate-2-aminopyridine-hexafluoridophosphate ternary system CrystEngComm. 15 686

    Article  CAS  Google Scholar 

  15. Mitra M, Manna P, Bauza A, Ballester P, Seth S K, Choudhury S R, et al. 2014 3-Picoline mediated self-assembly of M(II)-malonate complexes (M = Ni/Co/Mn/Mg/Zn/Cu) assisted by various weak forces involving lone pair−π, π–π, and anion···π–hole interactions J. Phys. Chem. B 118 14713

    Article  CAS  PubMed  Google Scholar 

  16. Manna P, Seth S K, Bauzá M, Mitra M, Choudhury S R, Frontera A and Mukhopadhyay S 2014 pH dependent formation of unprecedented water-bromide cluster in the bromide salts of PTP assisted by anion−π interactions: synthesis, structure, and DFT study Cryst. Growth Des. 14 747

    Article  CAS  Google Scholar 

  17. Stephenson M D and Hardie M J 2005 Extended structures of transition metal complexes of 6,7-dicyanodipyridoquinoxaline: π-stacking, weak hydrogen bonding, and CN···π interactions Cryst. Growth Des. 6 423

    Article  CAS  Google Scholar 

  18. Janiak C 2000 A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands Dalton Trans. 13 3885

    Article  Google Scholar 

  19. Sinnokrot M O and Sherrill C D 2004 Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, T-shaped, and parallel-displaced configurations J. Phys. Chem. A 108 10200

    Article  CAS  Google Scholar 

  20. Deshmukh M M and Sakaki S 2012 Two-step evaluation of binding energy and potential energy surface of van der Waals complexes J. Comput. Chem. 33 617

    Article  CAS  PubMed  Google Scholar 

  21. Deshmukh M M and Sakaki S 2011 Binding energy of gas molecule with two pyrazine molecules as organic linker in metal-organic framework: its theoretical evaluation and understanding of determining factors Theor. Chem. Acc. 130 475

    Article  CAS  Google Scholar 

  22. Gadre S R, Yeole S and Sahu N 2014 Quantum chemical investigations on molecular clusters Chem. Rev. 114 12132

    Article  CAS  PubMed  Google Scholar 

  23. Egli M and Sarkhel S 2007 Lone pair-aromatic interactions: To stabilize or not to stabilize Acc. Chem. Res. 40 197

    Article  CAS  PubMed  Google Scholar 

  24. Lu Z, Gamez P, Mutikainen I, Turpeinen U and Reedijk J 2007 Supramolecular assemblies generated from both lone-pair···π and C−H···π binding interactions Cryst. Growth Des. 7 1669

    Article  CAS  Google Scholar 

  25. Mooibroek T J, Gamez P and Reedijk J 2008 Lone pair–π interactions: a new supramolecular bond CrystEngComm. 10 1501

    Article  CAS  Google Scholar 

  26. Singh S K and Das A 2015 The n → π* interaction: a rapidly emerging non-covalent interaction Phys. Chem. Chem. Phys. 17 9596

    Article  CAS  PubMed  Google Scholar 

  27. Sarkhel S, Rich A and Egli M 2003 Water−Nucleobase “Stacking”: H−π and lone pair−π interactions in the atomic resolution crystal structure of an RNA pseudoknot J. Am. Chem. Soc. 125 8998

    Article  CAS  PubMed  Google Scholar 

  28. Eddaoudi M, Moler D B, Li H, Chen B, Reineke T M, O’Keeffe M and Yaghi O M 2001 Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks Acc. Chem. Res. 34 319

    Article  CAS  PubMed  Google Scholar 

  29. Pachfule P, Das R, Poddar P and Banerjee R 2010 Structural, magnetic, and gas adsorption study of a two-dimensional tetrazole-pyrimidine based metal-organic framework Cryst. Growth Des. 10 2475

    Article  CAS  Google Scholar 

  30. Chen B, Eddaoudi M, Reineke T M, Kampf J W, O’Keeffe M and Yaghi O M 2000 Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate) J. Am. Chem. Soc. 122 11559

    Article  CAS  Google Scholar 

  31. Suresh E and Bhadbhade M M 1997 Metal–α, ω-dicarboxylate complexes. I. Aqua (2,2’-bipyridyl-N, N’)(malonato-O, O’) copper (II) monohydrate Acta Crystallogr. C53 193

    CAS  Google Scholar 

  32. Choudhury S R, Lee H M, Hsiao T-H, Colacio E, Jana A D and Mukhopadhyay S 2010 Co-operation of π⋯π, Cu(II)⋯π, carbonyl⋯π and hydrogen-bonding forces leading to the formation of water cluster mimics observed in the reassessed crystal structure of [Cu(mal)(phen)(H2O)]2·3H2O (H2mal = malonic acid, phen = 1,10-phenanthroline) J. Mol. Struct. 967 131

    Article  CAS  Google Scholar 

  33. Diallo M, Dieng M, Gaye M, Sall A S, Barry A H and Chahrazed B 2007 Aquamalonato(1,10-phenanthroline)-copper(II) sesquihydrate Acta Crystallogr. E63 m1810

    Google Scholar 

  34. Kwik W-L, Ang K-P, Chan H S-O, Chebolu V and Koch S A 1986 Thermal, spectroscopic, and structural properties of aqua(malonato-O, O’)(l, l′-phenanthroline)copper(II) hydrate (1/1.5) J. Chem. Soc. Dalton Trans. 13 2519

    Article  Google Scholar 

  35. Youngme S, Phatchimkun J and Chaichit N 2006 Aqua(di-2-pyridylamine-k2N,N′)(malonato-k2O,O′)copper(II) monohydrate Acta Crystallogr. C62 m602

    Google Scholar 

  36. Gasque L, Moreno-Eaparza R, Mollins E, Brianso-Penalva J L, Ruis-Ramirez L and Medina-Dickinson G 1999 Aqua(5,6-dimethyl-l,10-phenanthroline-N,N’)(malonato-O,O’) copper(II) hydrate Acta Crystallogr. C55 158

    CAS  Google Scholar 

  37. Delgado F S, Lahoz F, Lloret F, Julve M and Ruiz-Pérez C 2008 Supramolecular networks in copper(II) malonate complexes Cryst. Growth Des. 8 3219

    Article  CAS  Google Scholar 

  38. Santini C, Pellei M, Gandin V, Porchia M, Tisato F and Marzano C 2013 Advances in copper complexes as anticancer agents Chem. Rev. 114 815

    Article  PubMed  CAS  Google Scholar 

  39. Chikira M, Tomizawa Y, Fukita D, Sugizaki T, Sugawara N, Yamazaki T, et al. 2002 DNA-fiber EPR study of the orientation of Cu(II) complexes of 1,10-phenanthroline and its derivatives bound to DNA: mono(phenanthroline)-copper(II) and its ternary complexes with amino acids J. Inorg. Biochem. 89 163

    Article  CAS  PubMed  Google Scholar 

  40. Selvakumar B, Rajendiran V, Uma Maheswari P, Stoeckli-Evans H M and Palaniandavar M 2006 Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: the novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage J. Inorg. Biochem. 100 316

    Article  CAS  PubMed  Google Scholar 

  41. Barve A, Kumbhar A, Bhat M, Joshi B, Butcher R, Sonawane U and Joshi R 2009 Mixed-ligand copper(II) maltolate complexes: synthesis, characterization, DNA binding and cleavage, and cytotoxicity Inorg. Chem. 48 9120

    Article  CAS  PubMed  Google Scholar 

  42. Rodríguez-Martín Y, Hernández-Molina M, Delgado F S, Pasan J, Ruiz-Pérez C, Sanchiz J, et al. 2002 Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets CrystEngComm 4 522

    Article  Google Scholar 

  43. Delgado F S, Sanchiz J, Ruiz-Pérez C, Lloret F and Julve M 2003 Design of high-dimensional copper(II) malonate complexes with exo-polydentate N-donor ligands Inorg. Chem. 42 5938

    Article  CAS  PubMed  Google Scholar 

  44. Rodríguez-Martín Y, Sanchiz J, Ruiz-Pérez C, Lloret F and Julve M 2002 Alternating cationic–anionic layers in the [Mii(H2O)6][Cuii(mal)2(H2O)] complexes linked through hydrogen bonds (M = Mn, Co, Ni, Cu and Zn; H2mal = malonic acid) CrystEngComm 4 631

    Article  Google Scholar 

  45. Delgado F S, Ruiz-Pérez C, Sanchiz J, Lloret F and Julve M 2006 Versatile supramolecular self-assembly, Part II. Network formation and magnetic behaviour of copper(ii) malonate anions in ammonium derivatives CrystEngComm 8 530

    Article  CAS  Google Scholar 

  46. Kurth D G, Fromm K M and Lehn J-M 2001 Hydrogen-bonding and metal-ion-mediated self-assembly of a nanoporous crystal lattice Eur. J. Inorg. Chem. 26 1523

    Article  Google Scholar 

  47. Aakeroy C B, Champness N R and Janiak C 2010 Recent advances in crystal engineering CrystEngComm 12 22

    Article  CAS  Google Scholar 

  48. Desiraju G R 2005 C-H⋯O and other weak hydrogen bonds. From crystal engineering to virtual screening Chem. Commun. 26 2995

    Article  CAS  Google Scholar 

  49. Kumbhar A S, Deshpande M S and Butcher R J 2008 Hydrogen bond directed open-framework of bis(bipyridine-glycoluril) phosphatocobalt(III) with solvent accessible void space CrystEngComm 10 1520

    Article  CAS  Google Scholar 

  50. Deshpande M S, Kumbhar A S and Puranik V G 2008 Hydrogen bonding-directed metallosupramolecular structural motifs based on a peripheral urea fused bipyridine tecton Cryst. Growth Des. 8 1952

    Article  CAS  Google Scholar 

  51. Deshpande M S, Kumbhar A S, Puranik V G and Selvaraj K 2006 Supramolecular self-assembled ruthenium-polypyridyl framework encapsulating discrete water cluster Cryst. Growth Des. 6 743

    Article  CAS  Google Scholar 

  52. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Crystallogr. C71 3

    Google Scholar 

  53. Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behaviour Phys. Rev. A: At. Mol. Opt. Phys. 38 3098

    Article  CAS  Google Scholar 

  54. Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  55. Hariharan P C and Pople J A 1973 The influence of polarization functions on molecular orbital hydrogenation energies Theor. Chim. Acta. 28 213

    Article  CAS  Google Scholar 

  56. Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J and Pople J A 1982 Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements J. Chem. Phys. 77 3654

    Article  CAS  Google Scholar 

  57. Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg J. Chem. Phys. 82 270

    Article  CAS  Google Scholar 

  58. Wadt W R and Hay P J 1985 Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi J. Chem. Phys. 82 284

    Article  CAS  Google Scholar 

  59. Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals J. Chem. Phys. 82 299

    Article  CAS  Google Scholar 

  60. Bergner A, Dolg M, Kuechle W, Stoll H and Preuss H 1993 Ab initio energy-adjusted pseudopotentials for elements of groups 13–17 Mol. Phys. 80 1431

    Article  CAS  Google Scholar 

  61. Dolg M, Stoll H, Preuss H and Pitzer R M 1993 Relativistic and correlation effects for element 105 (hahnium, Ha): a comparative study of M and MO (M = Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials J. Phys. Chem. 97 5852

    Article  CAS  Google Scholar 

  62. M. J. Frisch et al. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, (2009) (for detail author list see SI).

  63. Deshmukh M M, Bartolotti L J and Gadre S R 2008 Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach J. Phys. Chem. A 112 312

    Article  CAS  PubMed  Google Scholar 

  64. Deshmukh M M and Gadre S R 2009 Estimation of N–H···O=C Intramolecular hydrogen bond energy in polypeptides J. Phys. Chem. A 113 7927

    Article  CAS  PubMed  Google Scholar 

  65. Deshmukh M M, Bartolotti L J and Gadre S R 2011 Intramolecular hydrogen bond energy and cooperative interactions in α-, β-, and γ-cyclodextrin conformers J. Comput. Chem. 32 2996

    Article  CAS  PubMed  Google Scholar 

  66. Ganesh V, Dongare R K, Balanarayan P and Gadre S R 2006 Molecular tailoring approach for geometry optimization of large molecules: Energy evaluation and parallelization strategies J. Chem. Phys. 125 104109

    Article  CAS  PubMed  Google Scholar 

  67. Eisenberg D and Kauzmann W 1969 The structure and properties of water (Oxford University Press: Oxford)

    Google Scholar 

  68. Liu K, Brown M G, Carter C, Saykally R J, Gregory J K and Clary D C 1996 Characterization of a cage form of the water hexamer Nature 381 501

    Article  CAS  Google Scholar 

  69. Lever A B P 1984 Inorganic electronic spectroscopy (Elsevier: Amsterdam) 33

    Google Scholar 

  70. Subramanian P S, Suresh E and Srinivas D 2000 Synthesis, X-ray structure, single-crystal EPR and 1H-NMR studies of a distorted square planar Cu(salEen)2(ClO4)2 complex in a novel bilayered architecture:salEen) N, N-Diethylethylenesalicylidenamine Inorg. Chem. 39 2053

    Article  CAS  PubMed  Google Scholar 

  71. Hathaway B J, Billing D E, Dudley R J, Fereday R J and Tomlinson A A G 1970 Electronic and electron spin resonance spectra of diamminocopper(II) trithiocyanato argentate (I) and iodo bis-(2,2’- bipyridyl )copper(II) iodide J. Chem. Soc. A 11 806

    Article  Google Scholar 

  72. Bencini A and Gatteschi D 1977 Single-crystal polarized electronic and electron spin resonance spectra of the trigonal-bipyramidal complex aquobis(1, l0-phenanthroline)copper(II) nitrate Inorg. Chem. 16 1994

    Article  CAS  Google Scholar 

  73. Bencini A, Bertini I, Gatteschi D and Scozzafava A 1978 Single-crystal ESR spectra of copper(II) complexes with geometries intermediate between a square pyramid and a trigonal bipyramid Inorg. Chem. 17 3195

    Google Scholar 

  74. Wayland B B and Kapur V K 1974 Electron paramagnetic resonance and electronic spectral evidence for isomers resulting from basal and axial ligation of bis (hexafluoroacetylacetonato) copper(II) by triphenylphosphine Inorg. Chem. 13 2517

    Article  CAS  Google Scholar 

  75. Ritterskamp N, Sharples K, Richards E, Folli A, Chiesa M, Platts J A and Murphy D M 2017 Understanding the coordination modes of [Cu(acac)2(imidazole)n=1,2] adducts by EPR, ENDOR, HYSCORE, and DFT analysis Inorg. Chem. 56 11862

    Article  CAS  PubMed  Google Scholar 

  76. Attanasio D, Collamati I and Ercolani C 1974 Ligand arrangement and tetragonal distortion in CuO4N2 chromophores studied by electronic and electron spin resonance spectroscopy J. Chem. Soc. Dalton Trans. 11 1319

    Article  Google Scholar 

  77. Hirohama T, Kuranuki Y, Ebina E, Sugizaki T, Arii H, Chikira M, et al. 2005 Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity J. Inorg. Biochem. 99 1205

    Article  CAS  PubMed  Google Scholar 

  78. Spek A L 2009 Structure validation in chemical crystallography Acta Crystallogr. D65 148

    Google Scholar 

  79. Spek A L 2003 Single-crystal structure validation with the program PLATON J. Appl. Crystallogr. 36 7

    Article  CAS  Google Scholar 

  80. Addison A W, Rao T N, Reedijk J, Rijn J V and Verschoor G C 1984 Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate J. Chem. Soc. Dalton Trans. 7 1349

    Article  Google Scholar 

  81. Manikumari S, Shivaiah V and Das S K 2002 Identification of a Near-linear supramolecular water dimer, (H2O)2, in the channel of an inorganic framework material Inorg. Chem. 41 6953

    Article  CAS  PubMed  Google Scholar 

  82. Schmidt R, Oh J H, Sun Y S, Deppisch M, Krause A M, Radacki K, et al. 2009 High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors J. Am. Chem. Soc. 131 6215

    Article  CAS  PubMed  Google Scholar 

  83. Anthony J E, Brooks J S, Eaton D L and Parkin S R 2001 Functionalized pentacene: improved electronic properties from control of solid-state order J. Am. Chem. Soc. 123 9482

    Article  CAS  PubMed  Google Scholar 

  84. Yang J, Yan D and Jones T S 2015 Molecular template growth and its applications in organic electronics and optoelectronics Chem. Rev. 115 5570

    Article  CAS  PubMed  Google Scholar 

  85. Ahirwar M B, Gadre S R and Deshmukh M M 2020 Direct and reliable method for estimating the hydrogen bond energies and cooperativity in water clusters, Wn, n = 3 to 8 J. Phys. Chem. A 124 6699

    Article  CAS  PubMed  Google Scholar 

  86. Deshmukh M M, Gadre S R and Bartolotti L J 2006 Estimation of intramolecular hydrogen bond energy via molecular tailoring approach J. Phys. Chem. A 110 12519

    Article  CAS  PubMed  Google Scholar 

  87. Deshmukh M M, Suresh C H and Gadre S R 2007 Intramolecular hydrogen bond energy in polyhydroxy systems: a critical comparison of molecular tailoring and isodesmic approaches J. Phys. Chem. A 111 6472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT) Madras for the ESR spectral data of the compounds. MSD acknowledges funding from the University Grants Commission (UGC), New Delhi for the D. S. Kothari Postdoctoral Fellowship (No. F.4-2/2006(BSR)/CH/17-18/ 0105). MMD is thankful to the UGC for the initial Start-up Grant (No. F.30-56/2014/BSR). MBA is thankful to Dr. Harisingh Gour Vishwavidyalaya, Sagar, for a Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha S Deshpande.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, M.S., Morajkar, S.M., Ahirwar, M.B. et al. Synthesis, structural, and DFT studies of mixed ligand copper(II) malonates. J Chem Sci 133, 99 (2021). https://doi.org/10.1007/s12039-021-01947-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01947-w

Keywords

Navigation