Skip to main content

Advertisement

Log in

Formation and Structure of Iodine: Water (H2O-I2) charge-transfer complex

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Absorption spectra of iodine molecule in water confirm the formation of H2O-I2 C-T complex with a shifted iodine visible band at 461 nm and a charge transfer (C-T) band at 202 nm. Iodine oxidizes water leading to the formation of \({\text{I}}_{3}^{ - }\) ion. Absorption bands of \({\text{I}}_{3}^{ - }\) the ion at 351 nm and 284 nm are observed in Iodine solution in water. The concentration of \({\text{I}}_{3}^{ - }\) is about 1% of H2O-I2 C-T complex when iodine is dissolved in water with ε value of 16771M−1cm−1 at 351 nm. DFT calculation shows that two I2 molecules can bind to two lone pairs of O in H2O nearly in tetrahedral geometry with stabilization energy − 8.3 kcal/M. But, one I2 bonded to one of the lone pairs on oxygen and one H2O molecule is hydrogen-bonded to the second lone pair on oxygen in nearly tetrahedral geometry is more stable with energy −8.5 kcal/M. By plotting experimental ionization energies of H2O and I2 from photoelectron spectroscopy, MOs of H2O-I2 C-T complex is constructed. C-T band at 202 nm (6.14 eV) is the excitation from the stabilized sp3 hybridized oxygen lone pair in H2O to destabilized σ* orbital of I2 in the H2O-I2 C-T complex.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Benesi H A and Hildebrand J H 1949 A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons J. Am. Chem. Soc. 71 2703

    Article  CAS  Google Scholar 

  2. Voigt E M 1968 Absorption maxima of the visible band of iodine in different groups of solvents J. Phys. Chem. 72 3300

    Article  CAS  Google Scholar 

  3. Voigt E M and Meyer B 1968 Charge-transfer spectra of iodine with hydrogen sulfide and benzene in low-temperature matrices J. Chem. Phys. 49 852

    Article  CAS  Google Scholar 

  4. Julien L M, Bennett W E and Person W B 1969 A Spectroscopic Study of the Ethanol-Iodine Complex J. Amer. Chem. Soc. 91 6915

    Article  CAS  Google Scholar 

  5. Tamres M and Bhat S N 1972 Vapor-phase charge-transfer complexes. VII. Iodine complexes with diethyl sulfide and dimethyl sulfide J. Amer. Chem. Soc. 94 2577

    Article  CAS  Google Scholar 

  6. Uruchurtux M I B, Kerenskaya G and Janda K C 2009 Structure, spectroscopy and dynamics of halogen molecules interacting with water Int. Rev. Phys. Chem. 28 223

    Article  Google Scholar 

  7. Kireev S V and Shnyrev S L 2015 Study of molecular iodine, iodate ions, iodide ions, and triiodide ions solutions absorption in the UV and visible light spectral bands Laser Phys. 25 1

    Article  Google Scholar 

  8. Violet P F, Bonneau R and Dubien J J 1973 Lase flash photolysis of iodine dissolved in hydroxylic solvents identification of iodine atom charge transfer complexes Chem. Phys. Lett. 19 251

    Article  Google Scholar 

  9. Treinin A and Hayon E 1975 Charge transfer spectra halogen atoms in water correlation of the electronic transition energies of iodine, bromine, chlorine, hydroxyl and hydrogen radicals with their electron affinities J. Am. Chem. Soc. 97 1716

    Article  CAS  Google Scholar 

  10. Kamath P V, Hegde M S and Rao C N R 1986 A novel investigation of vapour-phase charge-transfer complexes of halogens with n donors by electron energy loss spectroscopy J. Phys. Chem. 90 1990

    Article  CAS  Google Scholar 

  11. Ananthavel S P, Jayaram V and Hegde M S 1996 Electron donor-acceptor complex of ICl with diethyl ether He I photoelectron spectroscopy and ab initio molecular orbital study J. Chem. Soc. Faraday Trans. 92 1677

    Article  CAS  Google Scholar 

  12. Ammal S S C, Ananthavel S P, Chandrashekar J, Venuvanalingam P and Hegde M S 1996 Electron donor-acceptor complexes of I2 with diethyl ether and diethyl sulphide. An ab initio MO study Chem. Phys. Lett. 248 153

    Article  Google Scholar 

  13. Hegde M S 1997 Charge transfer complex revisited Curr. Sci. 73 747

    CAS  Google Scholar 

  14. Ammal S S C, Ananthavel S P, Venuvanalingam P and Hegde M S 1998 Structure of the BenzeneICl Complex: A UVPES and ab initio molecular orbital study J. Phys. Chem. A 102 532

    Article  CAS  Google Scholar 

  15. Brundle C R and Turner D W 1968 High resolution molecular photoelectron spectroscopy II Water and deuterium oxide Proc. Roy. Soc. A 307 27

    CAS  Google Scholar 

  16. Hufner A 2003 Photoelectron Spectroscopy: Principles and applications (New York: Springer) p. 225

  17. Fillary-Travis A J, Legon A C and Willoughby L C 1984 Rotational spectrum and properties of the hydrogen-bonded heterodimer H2O–-HCN from pulsed-nozzle, Fourier-transform microwave spectroscopy Proc. R. Soc. Lond. A 396 405

    Article  Google Scholar 

  18. Paolo G et al 2009 QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials J. Phys. Condens. Matter 21 395502

    Article  Google Scholar 

  19. Malcıoglu O B et al 2011 turboTDDFT: a code for the simulation of molecular spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory Comp. Phys. Commun. 182 1744

    Article  Google Scholar 

  20. Heyd J, Scuseria G E and Ernzerhof M 2003 Hybrid functionals based on a screened Coulomb potential J. Chem. Phys. 118 8207

    Article  CAS  Google Scholar 

  21. Mulliken R S 1952 Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents J. Am. Chem. Soc. 74 600

    Article  Google Scholar 

  22. Andrews L, Prochaska E S and Loewenschuss A 1980 Resonance Raman and ultraviolet absorption spectra of the triiodide ion produced by alkali iodide-iodine argon matrix reactions Inorg. Chem. 19 463

    Article  CAS  Google Scholar 

  23. Kimura A, Katsumata S, Achiba Y, Yamazaki T and Iwata S 1981 Handbook of HeI photoelectron spectra of fundamental organic molecules (Tokyo: Japan Scientific Societies Press) p. 31

  24. Brundle C R and Baker A D 1977 Electron spectroscopy: Theory, techniques and applications (London: Academic Press) p. 188

  25. Kokalj A 2003 Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale Comp. Mater. Sci. 28 155

    Article  CAS  Google Scholar 

  26. Alkorta I, Rozas I and Elguero J 1998 Charge-transfer complexes between dihalogen compounds and electron donors J. Phys. Chem. A 102 9278

    Article  CAS  Google Scholar 

  27. Pathak A K, Mukherjee T and Maity D K 2008 Micro hydration of X2 Gas (X ) Cl, Br, and I): a theoretical study on X2, nH2O Clusters (n = 1–8) J. Phys. Chem. A 112 744

    Article  CAS  Google Scholar 

  28. Rao C N R, Hegde M S and Kamath P V 1986 A study of electron donor-acceptor interaction in vapour phase by electron energy loss spectroscopy and UV photoelectron spectroscopy J. Mol. Struct. (Theochem) 135 409

    Article  Google Scholar 

Download references

Acknowledgement

MSH thanks Professor CNR Rao for introducing C-T complexes and Professor Vishnu Kamath for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanna, Shrikanth, B.K. & Hegde, M.S. Formation and Structure of Iodine: Water (H2O-I2) charge-transfer complex. J Chem Sci 133, 51 (2021). https://doi.org/10.1007/s12039-021-01912-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01912-7

Navigation