Skip to main content
Log in

Impact of PVA modified sulfonated poly (arylene ether ketone) copolymers as proton exchange membranes on fuel cell parameters

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This article deals with the synthesis of sulfonated poly arylene ether ketones (SPEK-1 and SPEK-2) random copolymers via the direct copolymerization method as a polymer electrolyte membrane for fuel cell application. These copolymers were prepared via nucleophilic condensation reaction of 4,4′-bis(4-hydroxyphenyl) valeric acid (DPA), dichlorobenzophenone (DCDPK), and sulfonated naphthalene/sulfonated BPA monomers and characterized by FT-IR and 1H-NMR spectroscopic techniques. The crosslinking of the carboxylic acid group bearing valeric acid was done by polyvinylalcohol (PVA) in order to obtain a dimensionally stable membrane. The morphological and structural examination of the crosslinked membranes was carried out by FT-IR, SEM, and XRD techniques. The fuel cell-related parameters such as water uptake, ion exchange capacity, proton conductivity, and oxidative stability were determined and have been discussed in this article.

Graphic abstract

Graphical representation of proton conduction in polyvinylalchol (PVA) crosslinked sulfonated poly arylene ether ketone random copolymer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tang H, Peikang S, Jiang S P, Wang F and Pan M 2007 A degradation study of Nafion proton exchange membrane of PEM fuel cells J. Power Sources 170 85

    Article  CAS  Google Scholar 

  2. Peighambardoust S J, Rowshanzamir S and Amjadi M 2010 Review of the proton exchange membranes for fuel cell applications Int. J. Hydrog. Energy 35 9350

    Article  Google Scholar 

  3. Fernandes A C and Ticianelli E A 2009 A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cells J. Power Sources 193 547

    Article  CAS  Google Scholar 

  4. Liu Y H, Yi B, Shao Z G, Wang L, Xing D and Zhang H 2007 Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications J. Power Sources 163 808

    Article  Google Scholar 

  5. Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K T and Lee J H 2011 Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenge Prog. Polym. Sci. 36 813

    Article  CAS  Google Scholar 

  6. Li Q, Jensena J O, Savinell R F and Bjerrum N J 2009 High temperature proton exchange membranes based on polybenzimidazoles for fuel cells Prog. Polym. Sci. 34 449

    Article  CAS  Google Scholar 

  7. Ma X, Shen L, Zhang C, Xiao G, Yan D and Sun G 2008 Sulfonated poly (arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells J. Membr. Sci. 310 303

    Article  CAS  Google Scholar 

  8. Roelofs K S, Hirth T and Schiestel T 2010 Sulfonated poly (ether ether ketone)-based silica nanocomposite membranes for direct ethanol fuel cells J. Membr. Sci. 346 215

    Article  CAS  Google Scholar 

  9. Higashihara T, Matsumoto K and Ueda M 2009 Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells Polymer 50 5341

    Article  CAS  Google Scholar 

  10. Wang L, Meng Y Z, Li XH, Xiao M, Wang S J and Hay A S 2006 Oxidatively stable and highly proton conductive membrane from poly (arylene ether)s containing biphenyl moiety as pendent groups J. Membr. Sci. 280 108

    Article  CAS  Google Scholar 

  11. Kiran V, Awasthi S and Gaur B 2015 Hydroquinone based sulfonated poly (arylene ether sulfone) copolymer as proton exchange membrane for fuel cell applications Express Polym. Lett. 9 1053

    Article  CAS  Google Scholar 

  12. Kiran V and Gaur B 2015 Sulfonated poly (arylene ether sulfone) protonexchange membranes for fuel cell applications Green Process. Synth. 4 283

    CAS  Google Scholar 

  13. Tripathi B P and Shahi V K 2011 Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications Prog. Polym. Sci. 36 945

    Article  CAS  Google Scholar 

  14. Rao J P and Geckeler K E 2011 Polymer nanoparticles: preparation techniques and size-control parameters Prog. Polym. Sci. 36 887

    Article  CAS  Google Scholar 

  15. Sankir M, Kim Y S, Pivovar B S and McGrath J E 2007 Proton exchange membrane for DMFC and H2/air fuel cells: synthesis and characterization of partially fluorinated disulfonated poly (arylene ether benzonitrile) copolymers J. Membr. Sci. 299 8

    Article  CAS  Google Scholar 

  16. Thanganathan U and Nogami M 2015 Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells Int. J. Hydrog. Energy 40 1938

    Article  Google Scholar 

  17. Rhim J W, Park H B, Lee C B, Jun J H, Kim D S and Lee Y M 2004 Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes J. Membr. Sci. 238 146

    Article  Google Scholar 

  18. Wang Y and Hsieh Y L 2010 Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride J. Appl. Polym. Sci. 116 3252

    Article  Google Scholar 

  19. Zhou T, Yang L Y, Wang W, He L, Cai L and Zeng C 2019 Application of a novel PVA-based proton exchange membrane modified by reactive black KN-B for low-temperature fuel cells Int. J. Electrochem. Sci. 14 8522

    Google Scholar 

  20. Shabanpanah S and Omrani A 2019 Improved proton conductivity and methanolpermeability of PVA-based proton exchange membranes using diphenylamine-4-sulfonic acid sodium salt and silica nanoparticles Polym. Plast. Technol. 58 1662

    CAS  Google Scholar 

  21. Zhou T, Yang Li Y, Wang W, He L, Cai L and Zeng C 2019 Application of a novel PVA-based proton exchange membrane modified by reactive black KN-B for low-temperature fuel cells Int. J. Electrochem. Sci. 14 8514

    Article  CAS  Google Scholar 

  22. Li D, Li Z, Hu F, Long S, Zhang G and Yang J 2014 Pendant crosslinked poly (aryl ether sulfone) copolymers sulfonated on backbone for proton exchange membranes Polym. Eng. Sci. 54 2013

    Article  CAS  Google Scholar 

  23. Awasthi S, Kiran V and Gaur B 2018 Crosslinked poly (ether ether ketone): cost-effective proton exchange membranes for fuel cell application Bull. Mater. Sci. 41 9

    Article  Google Scholar 

  24. Guirguis O W and Moselhey M T H 2012 Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends Nat. Sci. 4 57

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Gaur.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 498 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, R., Kiran, V., Gaur, B. et al. Impact of PVA modified sulfonated poly (arylene ether ketone) copolymers as proton exchange membranes on fuel cell parameters. J Chem Sci 133, 36 (2021). https://doi.org/10.1007/s12039-021-01905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01905-6

Keywords

Navigation