T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes

Abstract

The present paper reports the synthesis of iron-oxide nanoparticles (diameter 12.8±2.2 nm) coated with silica shell doped with paramagnetic Gd(III)-based complexes. The resulting nanoparticles with a silica shell thickness of about 45 nm have an average diameter of 113.1±14.3 nm and feature high transverse and longitudinal relaxivities (356 and 25 mM−1 s−1, respectively) at 1.5 T and 25 °C on a medical whole body NMR scanner. It has been also revealed using magnetic heating measurements that the prepared core-shell nanoparticles possess a high specific adsorption rate of around 236 W/g in aqueous media. The surface of the composite nanoparticles was decorated by amino-groups for a greater cellular uptake behaviour. The cell viability measurements reveal the concentration-dependent cytotoxicity of the nanoparticles, which agrees well with the high content of Gd(III) complexes in the nanomaterial. The obtained results show that the core-shell design of nanoparticles with superparamagnetic and paramagnetic parts can be promising for high transverse (and longitudinal) relaxivity as well as magnetic hyperthermia.

Graphical abstract

Multifunctional nanoparticles for dual-mode MRI contrast and hyperthermia.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    Jedlovszky-Hajdu A, Tombacz E, Banyai I, Babos M and Palko A 2012 Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths J. Magn. Magn. Mater. 324 3173

    CAS  Article  Google Scholar 

  2. 2.

    Xiao N, Gu W, Wang H, Deng Y, Shi X and Ye L 2014 T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles J. Colloid Interface Sci. 417 159

    CAS  Article  Google Scholar 

  3. 3.

    Sulek S, Mammadov B, Mahcicek D I, Sozeri H, Atalar E, Tekinay A B and Guler M O 2011 Peptide functionalized superparamagnetic nanoparticles as MRI contrast agents J. Mater. Chem. 21 15157

    CAS  Article  Google Scholar 

  4. 4.

    Huang J, Wang L, Lin R, Wang A Y, Yang L, Kuang M, et al. 2013 Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting ACS App. Mater. Interfaces. 5 4632

    CAS  Article  Google Scholar 

  5. 5.

    Ansari L and Malaekeh-Nikouei B 2017 Magnetic silica nanocomposites for hyperthermia applications Int. J. Hyperth. 33 354

    CAS  Article  Google Scholar 

  6. 6.

    Laurent S, Dutz S, Häfeli U O and Mahmoudi M 2011 Magnetic fluid hyperthermia: focus on superparamagnetic iron-oxide nanoparticles Adv. Colloid Interface Sci. 166 8

    CAS  Article  Google Scholar 

  7. 7.

    Gonzales-Weimuller M, Zeisberger M and Krishnan K M 2009 Size-dependent heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia J. Magn. Magn. Mater. 321 1947

    CAS  Article  Google Scholar 

  8. 8.

    Hedayatnasab Z, Abnisa F and Duad W M A W 2017 Review on magnetic nanoparticles for magnetic nanofluid hyperthermia applications Mater. Des. 123 174

    CAS  Article  Google Scholar 

  9. 9.

    Guibert C, Dupuis V, Peyre V and Fresnais J 2015 Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation J. Phys. Chem. C 119 28148

    CAS  Article  Google Scholar 

  10. 10.

    Müller R, Dutz S, Neeb A, Cato A C B and Zeisberger M 2013 Magnetic heating effect of nanoparticles with different sizes and size distributions J. Magn. Magn. Mater. 328 80

    Article  Google Scholar 

  11. 11.

    Ramimoghadam D, Bagheri S and Hamid S B A 2014 Progress in electrochemical synthesis of magnetite iron oxide nanoparticles J. Magn. Magn. Mater. 368 207

    CAS  Article  Google Scholar 

  12. 12.

    Yang M, Gao L, Liu K, Luo C, Wang Y, Yu L and Peng H 2015 Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent Talanta 131 661

    CAS  Article  Google Scholar 

  13. 13.

    Xiao W, Gu H, Li D, Chen D, Deng X, Jiao Z and Lin J 2012 Microwave-assisted synthesis of magnetite nanoparticles for MRI blood pool contrast agents J. Magn. Magn. Mater. 324 488

    CAS  Article  Google Scholar 

  14. 14.

    Rohrer M, Bauer H, Mintorovitch J, Requardt M and Weinmann H J 2005 Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths Invest. Radiol. 40 715

    Article  Google Scholar 

  15. 15.

    Shin T-H, Choi J S, Yun S, Kim I S, Song H T, Kim Y, et al. 2014 T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials ACS Nano 8 3393

    CAS  Article  Google Scholar 

  16. 16.

    Choi J-S, Lee J H, Shin T H, Song H T, Kim E Y and Cheon J 2010 Self-confirming “AND” logic nanoparticles for fault-free MRI J. Am. Chem. Soc. 132 11015

    CAS  Article  Google Scholar 

  17. 17.

    Stepanov A, Fedorenko S, Amirov R, Nizameev I, Kholin K, Voloshina A, et al. 2018 Silica-coated iron-oxide nanoparticles doped with Gd(III) complexes as potential double contrast agents for magnetic resonance imaging at different field strengths J. Chem. Sci. 130 125

    Article  Google Scholar 

  18. 18.

    Fedorenko S, Stepanov A, Zairov R, Kaman O, Amirov R, Nizameev I, Kholin K, Ismaev I, Voloshina A, Sapunova A, Kadirov M and Mustafina A 2018 One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—Morphology and aggregation effects on MRI dual contrasting ability Colloids Surf., A 559 60

  19. 19.

    Fedorenko S V, Grechkina S L, Mustafina A R, Kholin K V, Stepanov A S, Nizameev I R, Ismaev I E, Kadirov M K, Zairov R R, Fattakhova A N, Amirov R R and Soloveva S E 2017 Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability Colloids Surf., B 149 243

  20. 20.

    Abenojar E C, Wickramasinghe S, Bas-Concepcion J and Samia A C S 2016 Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles Prog. Nat. Sci. 26 440

    CAS  Article  Google Scholar 

  21. 21.

    Parmar H, Smolkova IS, Kazantseva N E, Babayan V, Smolka P, Moucka R, et al. 2015 Size dependent heating efficiency of iron-oxide single domain nanoparticles Proced. Eng. 102 527

    CAS  Article  Google Scholar 

  22. 22.

    Nemati Z, Das R, Alonso J, Clements E, Phan M H and Srikanth H 2017 Iron oxide nanospheres and nanocubes for magnetic hyperthermia therapy: a comparative study J. Electron. Mater. 46 3764

    CAS  Article  Google Scholar 

  23. 23.

    Xiao L L, Fan H M, Yi J B, Yang Y, Choo E S G, Xue J M, et al. 2012 Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents J. Mater. Chem. 22 8235

    Article  Google Scholar 

  24. 24.

    Fedorenko S V, Mustafina A R, Mukhametshina A R, Jilkin M E,. Mukhametzyanov T A, Solovieva A O, Pozmogova T N, Shestopalova L V, Shestopalov M A, Kholin K V, Osin Y N and Sinyashin O G 2017 Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles Mater. Sci. Eng., C 76 551

  25. 25.

    Beddoes C M, Case C P and Briscoe W H 2015 Understanding nanoparticle cellular entry: a physicochemical perspective Adv. Colloid Interface Sci. 218 48

    CAS  Article  Google Scholar 

  26. 26.

    Salatin S, Dizaj S M and Khosroushahi A Y 2015 Effect of the surface modification, size, and shape on cellular uptake of nanoparticles Cell Biol. Int. 39 881

    CAS  Article  Google Scholar 

  27. 27.

    Saha K, Kim S T, Yan B, Miranda O R, Alfonso F S, Shlosman D and Rotello V M 2013 Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells Small 9 300

    Article  Google Scholar 

  28. 28.

    Iki N, Fujimoto T and Miyano S 1998 A new water-soluble host molecule derived from thiacalixarene Chem. Lett. 27 625

    Article  Google Scholar 

  29. 29.

    Bronstein L M, Huang X, Retrum J, Schmucker A, Pink M, Stein B D and Dragnea B 2007 Influence of iron oleate complex on iron oxide nanoparticle formation Chem. Mater. 19 3624

    CAS  Article  Google Scholar 

  30. 30.

    Dutz S, Kettering M, Hilger I, Müller R and Zeisberger M 2011 Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties Nanotechnology 22 265102

    Article  Google Scholar 

  31. 31.

    Dutz S, Müller R, Eberbeck D, Hilger I and Zeisberger M 2015 Magnetic nanoparticles adapted for specific biomedical applications Biomed. Eng.-Biomed. Tech. 60 405

    CAS  Google Scholar 

  32. 32.

    Voloshina D, Semenov V E, Strobykina A S, Kulik N V, Krylova E S, Zobov V V and Reznik V S 2017 Synthesis and antimicrobial and toxic properties of novel 1,3-bis(alkyl)-6-methyluracil derivatives containing 1,2,3- and 1,2,4-triazolium fragments Russ. J. Bioorg. Chem. 43 170

    CAS  Article  Google Scholar 

  33. 33.

    Fedorenko S, Stepanov A, Sibgatullina G, Samigullin D, Mukhitov A, Petrov K, et al. 2019 Fluorescent magnetic nanoparticles for modulating the level of Ca2+ in motoneurons Nanoscale 11 16103

    CAS  Article  Google Scholar 

  34. 34.

    Iqbal Y, Bae H, Rhee I and Hong S 2016 Magnetic heating of silica-coated manganese ferrite nanoparticles J. Magn. Magn. Mater. 409 80

    CAS  Article  Google Scholar 

  35. 35.

    Zhu X M, Wang Y X, Leung K C, Lee S F, Zhao F, Wang D W, et al. 2012 Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines Int. J. Nanomed. 7 953

    CAS  Article  Google Scholar 

  36. 36.

    Fedorenko S V, Mustafina A R, Mukhametshina A R, Jilkin M E, Mukhametzyanov T A, Solovieva A O, et al. 2017 Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles Mater. Sci. Eng. C 76 551

    CAS  Article  Google Scholar 

  37. 37.

    Davydov N, Mustafina A, Burilov V, Zvereva E, Katsyuba S, Vagapova L, et al. 2012 Complex formation of d-metal ions at the interface of TbIII-doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence ChemPhysChem. 13 3357

    CAS  Article  Google Scholar 

  38. 38.

    Mukhametshina A R, Fedorenko S V, Petrov A M, Zakyrjanova G F, Petrov K A, Nurullin L F, et al. 2018 Targeted nanoparticles for selective marking of neuromuscular junctions and ex vivo monitoring of endogenous acetylcholine hydrolysis ACS Appl. Mater. Interfaces 10 14948

    CAS  Article  Google Scholar 

  39. 39.

    Rosensweig R E 2002 Heating magnetic fluid with alternating magnetic field J. Magn. Magn. Mater. 252 370

    CAS  Article  Google Scholar 

  40. 40.

    Lübbe A S, Alexiou C and Bergemann C 2001 Clinical applications of magnetic drug targeting J. Surg. Res. 95 200

    Article  Google Scholar 

  41. 41.

    Mendes R G, Koch B, Bachmatiuk A, El-Gendy A A, Krupskaya Y, Springer A, et al. 2014 Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions Biochim. Biophys. Acta 1840 160

    CAS  Article  Google Scholar 

  42. 42.

    Haddad P S, Santos M C, Guzzi Cassago C A, Bernardes JS , Jesus M D and Seabra A B 2016 Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles J. Nanopart Res. 18 369

    Article  Google Scholar 

Download references

Acknowledgement

The work was funded by the Government assignment for FRC Kazan Scientific Center of Russian academy of Science (Reg. Nr. AAAA-A18-118041760011-2). M.R. thanks National Science Foundation of China (Grant No. 52071225) and the Czech Republic under the ERDF program “Institute of Environmental Technology—Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853).

Author information

Affiliations

Authors

Corresponding author

Correspondence to ALEXEY STEPANOV.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 769 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

STEPANOV, A., FEDORENKO, S., MENDES, R. et al. T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. J Chem Sci 133, 43 (2021). https://doi.org/10.1007/s12039-021-01904-7

Download citation

Keywords

  • Gd complexes
  • Iron-oxide nanoparticles
  • Magnetic resonance imaging
  • Hyperthermia