Skip to main content
Log in

Theory for influence of uncompensated solution resistance on EIS of diffusion limited adsorption at rough electrode

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Theory is developed for the electrochemical impedance spectroscopy (EIS) of the diffusion-limited adsorption process coupled with reversible charge transfer at rough electrodes under the influence of ubiquitous uncompensated solution resistance. This study quantitatively relates the impedance response of rough electrode to its phenomenological components, viz., diffusion limited adsorption, reversible charge transfer and uncompensated solution resistance. The random roughness of electrode is expressed by the surface statistical property, i.e., power spectrum of roughness. The fractal nature of roughness is characterized in terms of fractal dimension, lower cut-off length and topothesy length. The high-frequency regime is controlled by the uncompensated solution resistance whereas the low-frequency regime is governed by the adsorption process. The magnitude of impedance as well as phase decreases with rise in adsorption isotherm (length) parameter. The intermediate frequency regime is controlled by the coupling of adsorption and uncompensated solution resistance with the diffusion process. The fractal roughness parameters has quantitative influence on the magnitude of impedance over whole frequency regime while the phase plot shows qualitative difference in the intermediate frequency regime. The governing length scales which controls the characteristic crossover frequencies are: diffusion length, adsorption-ohmic coupling length and topothesy length (or width of interface). The three emergent crossover frequencies are: (i) ohmic reduced inner crossover frequency (ii) adsorption roughness topothesy dependent pseudo-quasireversibility characteristic frequency (iii) outer crossover frequency.

Graphic abstract

Synopsis: This study quantitatively relates the impedance response of rough electrode to its phenomenological components, viz., diffusion limited adsorption, reversible charge transfer and uncompensated solution resistance. The random roughness of electrode is expressed by the surface statistical property, i.e., power spectrum of roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

K :

Adsorption Isotherm Parameter

\(R_{\Omega }\) :

Uncompensated solution resistance

\(D_H\) :

Haussdorff Fractal Dimension

\(\ell \) :

Lower Cut-off Length

L :

Upper Cut-off Length

\(\ell _\tau \) :

Topothesy Length

\(L_{a\Omega }\) :

Adsorption-Ohmic coupling length

\(C_{ad}\) :

Adsorption capacitance

\(L_{D}\) :

Diffusion length(\(\sqrt{D/i\omega }\))

\(C_{\alpha }^{0}\) :

Bulk concentration of the species \(e.g.\;\alpha =O,R\)

\(\delta C_{\alpha }\) :

Change in concentration of species

\(\eta _0\) :

Small Amplitude of Perturbed Potential

\({\vec{K}_{\Vert }}\) :

Vector \((K_{x},K_{y})\)

\({\hat{n}}\) :

Normal vector drawn in outward direction

\(\vec{r_{\Vert }}\) :

Vector (xy)

\(\Gamma _\alpha \) :

Excess Surface Concentration

\(\delta (\vec{K}_{\Vert })\) :

Dirac delta function in wave-vector \(\vec{K}_{\Vert }\)

\(\zeta (\vec{r_{\Vert }})\) :

Arbitrary surface profile

\({\hat{\zeta }}(\vec{K_{\Vert }})\) :

Fourier transform of the arbitrary surface profile

j(t):

Current density

\(y(\omega )\) :

Admittance density

\(Y(\omega )\) :

Total admittance

\(Y_{P}(\omega )\) :

Smooth electrode admittance

\(Y_{W}(\omega )\) :

Warburg admittance

\(Y_{ad}(\omega )\) :

Adsorption admittance

\(F_1 \) :

Appell’s Function

\(_2F_1 \) :

Hypergeometric Function

\({K}_{\Vert }\) :

\([K_{x}^{2}+K_{y}^{2}]^{1/2}\)

\(\delta \) :

\(D_H-5/2\)

\(\omega _{i}\) :

Inner cut-off angular frequency

\(\omega _{o}\) :

Outer cut-off angular frequency

\(\Gamma \) :

Specific volume capacitance

\(\mu \) :

Strength of fractality

References

  1. Dabrowski A 2001 Adsorption-from theory to practice Adv. Colloid Interface Sci. 93 135

    Article  CAS  PubMed  Google Scholar 

  2. Feng J J, Xu J J and Chen H Y 2007 Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly Biosens. Bioelectron. 22 1618

    Article  CAS  PubMed  Google Scholar 

  3. Urbanova V, Karlicky F, Matěj A, Šembera F, Janoušek Z, Perman J A, Ranc V, Čepe K, Michl J, Otyepka M and Zbořil R 2016 Fluorinated graphenes as advanced biosensors effect of fluorine coverage on electron transfer properties and adsorption of biomolecules Nanoscale 8 12134

  4. Amemiya S 2020 Nanoelectrochemistry of adsorption-coupled electron transfer at carbon electrodes Nanocarbon Electrochem. 1

  5. Wang C H, Yang C, Song Y Y, Gao W and Xia X H 2005 Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film Adv. Funct. Mater. 15 1267

    Article  CAS  Google Scholar 

  6. Qiu H, Xu C, Huang X, Ding Y, Qu Y and Gao P 2008 Adsorption of Laccase on the surface of nanoporous gold and the direct electron transfer between them J. Phys. Chem. C 112 14781

    Article  CAS  Google Scholar 

  7. Gmucova K 2012 A review of non-Cottrellian diffusion towards micro- and nano structured electrode, in: M Shao and Y Stegun (Eds.) Electrochemical Cells New Advances in Fundamental Researches and Application (Croatia: InTech) Ch. 1

  8. Gauthier J A, Fields M, Bajdich M, Chen L D, Sandberg R B, Chan K and Norskov J K 2019 Facile electron transfer to CO\(_2\) during adsorption at the metal|solution interface J. Phys. Chem. C 123 29278

    Article  CAS  Google Scholar 

  9. Giona M, Giustiniani M and Ludlow D K 1995 Influence of geometry and energetic heterogeneity of adsorption isotherms Fractals 3 235

    Article  Google Scholar 

  10. Ehrburger-Dolle F 1994 Some new correlations between Dubinin-Radushkevich and Freundlich equations and fractal dimension of microporous solids Langmuir 10 2052

    Article  CAS  Google Scholar 

  11. Kumar R and Kant R 2013 Admittance of diffusion limited adsorption coupled to reversible charge transfer on rough and finite fractal electrodes Electrochim. Acta 95 275

    Article  CAS  Google Scholar 

  12. Hanson E L, Schwartz J, Nickel B, Koch N and Danisman M F 2003 Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon J. Am. Chem. Soc. 125 16074

    Article  CAS  PubMed  Google Scholar 

  13. Thissen P, Vega A, Peixoto T, Chabal Y J, Chen X and Luais E 2012 Controlled, Low-coverage metal oxide activation of Silicon for organic functionalization: unraveling the Phosphonate bond Langmuir 28 17494

    Article  CAS  PubMed  Google Scholar 

  14. Frumkin A N and Gaikazyan V I M 1951 Determination of the kinetics of adsorption of organic substances by a.c. measurements of the capacity and the conductivity at the boundary: Electrode-solution Dokl. Akad. Nauk SSSR 77 855

  15. Delahay P and Fike C T 1958 Adsorption kinetics with diffusion control-the plane and the expanding sphere J. Am. Chem. Soc. 80 2628

    Article  CAS  Google Scholar 

  16. Oliveira-Brett A M, da Silva L A and Brett C M A 2002 Adsorption of guanine, guanosine, and adenine at electrodes studied by differential pulse voltammetry and electrochemical impedance Langmuir 18 2326

    Article  CAS  Google Scholar 

  17. Martin M H and Lasia A 2011 Influence of experimental factors on the constant phase element behavior of Pt electrodes Electrochim. Acta 56 8058

    Article  CAS  Google Scholar 

  18. Giona M and Giustiniani M 1996 Thermodynamics and kinetics of adsorption in the presence of geometric roughness Sep. Technol. 6 99

    Article  CAS  Google Scholar 

  19. Sharma N, Goswami N and Kant R 2017 Experimental corroboration of the theory of Chronoamperometry at high roughness electrode for reversible charge transfer J. Electroanal. Chem. 788 83

    Article  CAS  Google Scholar 

  20. Chowdhury N R and Kant R 2018 Theory of generalized Gerischer impedance for quasi-reversible charge transfer at rough and finite fractal electrodes Electrochim. Acta 281 445

    Article  CAS  Google Scholar 

  21. Goswami N and Kant R 2019 Theory for impedance response of grain and grain boundary in solid state electrolyte J. Electroanal. Chem. 835 227

    Article  CAS  Google Scholar 

  22. Dhillon S, Goswami N and Kant R 2019 Theory for local EIS at rough electrode under diffusion controlled charge transfer: Onset of whiskers and dendrites J. Electroanal. Chem. 840 193

    Article  CAS  Google Scholar 

  23. Kant R and Singh M B 2017 Theory of the electrochemical impedance of mesostructured electrodes embedded with heterogeneous micropores J. Phys. Chem. C 121 7164

    Article  CAS  Google Scholar 

  24. Kumar R and Kant R 2009 Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness J. Chem. Sci. 121 579

    Article  CAS  Google Scholar 

  25. Srivastav S and Kant R 2011 Anomalous Warburg impedance: Influence of uncompensated solution resistance J. Phys. Chem. C 115 12232

    Article  CAS  Google Scholar 

  26. Kant R and Kumar R 2009 Theory of generalized Gerischer admittance of realistic fractal electrode J. Phys. Chem. C 113 19558

    Article  CAS  Google Scholar 

  27. Kumar M, Srivastav S and Kant R 2020 Influence of electrode roughness on DC biased admittance of quasi-reversible charge transfer with uncompensated solution resistance J. Electroanal. Chem. 877 114609

    Article  CAS  Google Scholar 

  28. Islam Md M and Kant R 2011 Generalization of the Anson equation for fractal and non fractal rough electrodes Electrochim. Acta 56 4467

    Article  CAS  Google Scholar 

  29. Kant R and Islam Md M 2010 Theory of absorbance transients of an optically transparent rough electrode J. Phys. Chem. C 114 19357

    Article  CAS  Google Scholar 

  30. Chowdhury N R, Kumar R and Kant R 2017 Theory for the Chronopotentiometry on rough and finite fractal electrode: Generalized Sand equation J. Electroanal. Chem. 802 64

    Article  CAS  Google Scholar 

  31. Kumar M, Mishra G K and Kant R 2019 Theory for admittance voltammetry of reversible two step electron transfer process with DC bias at rough and fractal electrode Electrochim. Acta 327 135024

    Article  CAS  Google Scholar 

  32. Parveen and Kant R 2016 General theory for pulse voltammetric techniques at rough electrodes: Multistep reversible charge transfer mechanism Electrochim. Acta, 220 475

  33. Parveen and Kant R 2016 General theory for pulse voltammetric techniques on rough and finite fractal electrodes for reversible redox system with unequal diffusivities Electrochim. Acta 194 283

  34. Jha S K, Sangal A and Kant R 2008 Diffusion-controlled potentiostatic current transients on realistic fractal electrodes J. Electroanl. Chem. 615 180

    Article  CAS  Google Scholar 

  35. Kant R 1997 Diffusion-limited reaction rates on self-affine fractals J. Phys. Chem. B 101 3781

    Article  CAS  Google Scholar 

  36. Kant R 2010 General theory of arbitrary potential sweep methods on an arbitrary topography electrode and its application to random surface roughness J. Phys. Chem. C 114 10894

    Article  CAS  Google Scholar 

  37. Jha S K and Kant R 2010 Theory of potentiostatic current transients for coupled catalytic reaction at random corrugated fractal electrode Electrochim. Acta 56 7266

    Article  CAS  Google Scholar 

  38. Kant R and Rangarajan SK 1995 Diffusion to rough interfaces: finite charge transfer rates J. Electroanal. Chem. 396 285

    Article  Google Scholar 

  39. Srivastav S and Kant R 2010 Theory of generalized Cottrellian current at rough electrode with solution resistance effects J. Phys. Chem. C 114 10066

    Article  CAS  Google Scholar 

  40. Kant R 1993 Can current transients be affected by the morphology of the nonfractal electrode? Phys. Rev. Lett. 70 4094

    Article  CAS  PubMed  Google Scholar 

  41. Garciá-Jareno J J, Sanmatiaś A, Navarro-Laboulais J and Vicente F 1999 Chronoamperometry of prussian blue films on ITO electrodes: Ohmic drop and film thickness effect Electrochim. Acta 44 4753

    Article  Google Scholar 

  42. Tacconi N R, Calandra A J and Arvia A J 1973 A contribution to the theory of the potential sweep method: charge transfer reactions with uncompensated cell resistance Electrochim. Acta 18 571

    Article  Google Scholar 

  43. Bard A J and Faulkner L R 1980 Electrochemical methods: Fundamentals and applications, Wiley, NY

    Google Scholar 

  44. Delahay P and Trachtenberg I 1957 Adsorption kinetics and electrode processes J. Am. Chem. Soc. 79 2355

    Article  CAS  Google Scholar 

  45. Lorenz W 1955 About the influence of surface roughness and potential determining ion adsorption on electrodes on the echo of diffusion polarization at constant current Z. Elektrochem. 59 730

    CAS  Google Scholar 

  46. Kant R and Rangarajan S K 2003 Effect of surface roughness on interfacial reaction-diffusion admittance J. Electroanal. Chem. 552 141

    Article  CAS  Google Scholar 

  47. Jha S K and Kant R 2010 Theory of partial diffusion-limited interfacial transfer/reaction on realistic fractals J. Electroanal. Chem. 641 78

    Article  CAS  Google Scholar 

  48. Avnir D, Gutfraind R and Farin D 1994 Fractals in Science (Berlin, Germany: Springer-Verlag)

    Google Scholar 

  49. Kant R, Kumar R and Yadav V K 2008 Theory of anomalous diffusion impedance of realistic fractal electrode J. Phys. Chem. C 112 4019

    Article  CAS  Google Scholar 

  50. Pajkossy T 1991 Electrochemistry at fractal surfaces J. Electroanal. Chem. Interfacial Electrochem. 300 1

    Article  CAS  Google Scholar 

  51. Nyikos L, Pajkossy T, Borosy A P and Martemyanov S A 1990 Diffusion to fractal surfaces-IV. The case of the rotating disc electrode of fractal surface Electrochim. Acta 35 1423

  52. W N Bailey and A Stegan 1964 (Eds.) Generalized hypergeometric Series (New York and London: Stechert Hafner Service Agency)

    Google Scholar 

  53. M Abramowitz and I Stegan 1972 (Eds.) Handbook of mathematical functions (New York: Dover Publications Inc.)

  54. Erdelyi A 1959 Hypergeometric functions of two variables Acta Mathematica 83 131

    Article  Google Scholar 

  55. Seri-Levy A and Avnir D 1993 Kinetics of diffusion-limited adsorption on fractal surfaces J. Phys. Chem. 97 10380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors show their gratitude towards University of Delhi, India and DST-SERB, India (EMR/2016/007779) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Kant.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 624 KB)

Supplementary material 1 (pdf 638 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastav, S., Kumar, M. & Kant, R. Theory for influence of uncompensated solution resistance on EIS of diffusion limited adsorption at rough electrode. J Chem Sci 133, 50 (2021). https://doi.org/10.1007/s12039-021-01901-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01901-w

Keywords

Navigation