Skip to main content
Log in

Polymorph of trans-dichlorotetrakis(pyridine-N)ruthenium(II) influenced by a dihydrazone: crystal structure, spectral, Hirshfeld surfaces, antimicrobial, toxicity and in silico docking studies

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Many reports describe the influence of additives or impurities on the physicochemical properties of crystals. On having obtained trans-[RuCl2(C5H5N)4] as brown, needle-shaped crystals contrary to red or orange-red blocks reported previously, we herein revisit its study. This complex was obtained from the filtrate of an ensuing reaction mixture of RuCl3·3H2O, bis(2-hydroxy-l-naphthaldehyde)adipoyldihydrazone (npahH4) and pyridine in methanol. Findings from X-ray crystallographic data and spectra of IR, UV-Visible, 1H and 13C NMR along with other analytical studies of the complex are presented here. A comparative study with previously reported crystal forms was performed to understand the accompanying molecular structural differences in the physical (shape, size and color) morphological alteration. Further probing into molecular dynamics, the molecular interactions were analyzed and quantified using computational methods. The symmetry of intermolecular interaction in C—H⋯Cl is different from earlier reported crystal forms. The intercontact H⋯H showed a major contribution (62.9%) for Hirshfeld surfaces. Also, we report antibacterial activity of the complex against methicillin-resistant Staphylococcus aureus followed by the in silico docking study that revealed its interaction with the residue Glu58 of ATPase subunit of S. aureus GyrB. Additional studies on its toxicity using rat models revealed this complex as non-toxic to animals.

Graphic abstract

Synopsis: The crystal and colour morphology of a polymorph of trans-[RuCl2(py)4] have been studied by different investigations. The intercontacts have been discussed. The significant influence of a dihydrazone in morphological changes is revealed. The biological aspects have been further investigated through non-toxicity, antimicrobial screening and molecular docking studies against pathogen S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dandekar P, Kuvadia Z B and Doherty M F 2013 Engineering crystal morphology Annu. Rev. Mater. Res. 43 359

    Article  CAS  Google Scholar 

  2. Sudha C and Srinivasan K 2014 Understanding the effect of solvent polarity on the habit modification of monoclinic paracetamol in terms of molecular recognition at the solvent crystal/interface Cryst. Res. Technol. 49 865

    Article  CAS  Google Scholar 

  3. Smith P E 2010 The effect of urea on the morphology of NaCl crystals: A combined theoretical and simulation study Fluid Phase Equilib. 290 36

    CAS  PubMed  Google Scholar 

  4. Keraliya R A, Soni T G, Thakkar V T and Gandhi T R 2010 Effect of solvent on crystal habit and dissolution behavior of tolbutamide by initial solvent screening Dissolution Technologies 17 16

    CAS  Google Scholar 

  5. Braga D, Grepioni F, Maini L and Polito M 2009 Crystal polymorphism and multiple crystal forms Struct. Bond. 132 25

    CAS  Google Scholar 

  6. Chen J, Lin L, Song Y and Shao L 2009 Influence of KOH on the hydrothermal modification of Mg(OH)2 crystals J. Crystal Growth 311 2405

    Article  CAS  Google Scholar 

  7. Wang D X, Chen S S, Li Y Y, Yang J Y, Wei T Y and Jin S H 2014 An Investigation into the effects of additives on crystal characteristics and impact sensitivity of RDX J. Energ. Mater. 32 184

    Article  Google Scholar 

  8. Weissbuch I, Addadi L, Lahav M, and Leiserowitz L 1991 Molecular recognition at crystal interfaces Science 253 637

    CAS  PubMed  Google Scholar 

  9. Hendriksen B A, Grant D J W, Meenan P and Green D A 1998 Crystallisation of paracetamol (acetaminophen) in the presence of structurally related substances J. Cryst. Growth 183 629

    Article  CAS  Google Scholar 

  10. Tedesco E, Giron D and Pfeffer S 2002 Crystal structure elucidation and morphology study of pharmaceuticals in development Cryst. Eng. Comm. 4 393

    CAS  Google Scholar 

  11. Evans I P, Spencer A and Wilkinson G 1973 Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes J. Chem. Soc., Dalton. Trans. 2 204

  12. Wu X L, Ye R F, Jia A Q, Chen Q and Zhang Q F 2013 trans-Dibromidotetrakis (pyridine-κN) ruthenium(II) Acta Cryst. E69 m105

  13. Coe B J, Meyer T J and White P S 1995 Synthetic and structural studies on trans-Tetrapyridine Complexes of Ruthenium(II) Inorg. Chem. 34 593

    CAS  Google Scholar 

  14. Małecki J G, Jaworska M, Kruszynski R and Gil-bortnowska R 2005 Synthesis and characterization of [RuCl2(picoline)4] complexes: Crystal structure of [RuCl2(ß-pic)4] Polyhedron 24 445

  15. Coe B J 2004 Syntheses and characterization of ruthenium(II) tetrakis(pyridine) complexes, An advanced coordination chemistry experiment or mini-project J. Chem. Edu. 8 5

    Google Scholar 

  16. Gilbert J D, Rose D and Wilkinson G 1970 Preparative use of blue solutions of Ruthenium(II): Ruthenium-(II) and -(III) complexes with amines, nitriles, phosphines, etc. J. Chem. Soc. A 2765

  17. Bottomley F and Mukaida M 1982 Electrophilic behaviour of nitrosyls: preparation and reactions of Six-co-ordinate Ruthenium Tetra(pyridine) Nitrosyl Complexes J. Chem. Soc. Dalton Trans. 1933

  18. Nagao H, Nishimura H, Kitanaka Y, Howell F S, Mukaida, M and Kakihana H 1990 Selective formation of Ruthenium(IV) complexes with a monooxygen ligand: trans-[RuX(O)(py)4]+ (X = Cl, ONO) Inorg. Chem. 29 1693

    Article  CAS  Google Scholar 

  19. Basumatary D, Lal R A and Kumar A 2015 Synthesis and characterization of low- and high-spin manganese(II) complexes of polyfunctional adipoyldihydrazone: Effect of coordination of N-donor ligands on stereo-redox chemistry J. Mol. Struct. 1092 122

    Article  CAS  Google Scholar 

  20. Lal R A, Basumatary D, Chanu O B, Lemtur A, Asthana M., Kumar A and De A K 2011 Synthesis, characterization, reactivity and electrochemical studies of manganese(IV) complexes of bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone J. Coord. Chem. 64 300

    Article  CAS  Google Scholar 

  21. Basumatary Debajani 2008 Synthesis and Structure of Manganese and Ruthenium complexes derived from some Adipoyl Dihydrazones (North-Eastern Hill University, Shillong, India) 105

    Google Scholar 

  22. Wong W T and Lau T C 1994 trans-Dichlorotetrapyridineruthenium(II) Acta Cryst. C50 1406

  23. Elsegood M R J and Tocher D A 1995 trans-Dichlorotetrakis(pyridine-N)ruthenium(II) Acta Cryst. C51 40

  24. Bu Z, Wang Z, Yang L and Cao S 2010 Synthesis of propylene carbonate from carbon dioxide using trans-dichlorotetrapyridineruthenium(II) as catalyst Appl. Organomet. Chem. 24 813

    Article  Google Scholar 

  25. Trivedi M, Sharma Y K, Nagarajan R and Rath N P 2010 Synthetic, spectral and structural study of mono bis(pyridine)dichlorobis(dimethyl sulfoxide-S) ruthenium(II) complex, [RuCl2(py)2(dmso-S)2] and its reactivity with nitrogen donor bases in polar and non-polar solvent J. Mol. Struct. 975 335

    Article  CAS  Google Scholar 

  26. Lam P L, Lu G L, Hon K M, Lee K W, Ho C L, Wang X, Tang J C O, Lam K H, Wong R S M, Kok S H L, Bian Z X, Li H, Lee K K H, Gambari R, Chui C H and Wong W Y 2014 Development of ruthenium(II) complexes as topical antibiotics against methicillin resistant Staphylococcus aureus Dalton Trans. 43 3949

  27. Caruso F, Monti E, Matthews J, Rossi M, Gariboldi M B, Pettinari C, Pettinari R and Marchetti F 2014 Synthesis, characterization, and antitumor activity of water-soluble (arene)ruthenium(II) derivatives of 1,3-dimethyl-4-acylpyrazolon-5-ato ligands. First example of Ru(arene)(ligand) antitumor species involving simultaneous Ru−N7(guanine) bonding and ligand intercalation to DNA Inorg. Chem. 53 3668

  28. Fernandez L and Hancock R E W 2012 Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance Clin. Microbiol. Rev. 25 661

    Article  CAS  Google Scholar 

  29. Siemens 1994 XSCANS User’s Manual and XEMP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA; Farrugia L J 1998 ORTEP-32 for Windows, University of Glasgow, Scotland

  30. Sheldrick G M 1997 SHELXS97, SHELXL97 and CIFTAB, University of Gottingen, Germany

    Google Scholar 

  31. Macrae C F, Bruno I J, Chisholm J A, Edgington P R, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R., Streek J van de and Wood P A 2008 Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures J. Appl. Crystallogr. 41 466

  32. Wolff S K, Grimwood D J, McKinnon J J, Jayatilaka D and Spackman M A 2007 Crystal Explorer 3.0. University of Western Australia, Perth

  33. Spackman M A and McKinnon J J 2002 Fingerprinting intermolecular interactions in molecular crystal Cryst. Eng. Comm. 4 378

    Article  CAS  Google Scholar 

  34. Kumar S M, Manjunath B C, Lingaraju G S, Abdoh M M M, Sadashiva M P and Lokanath N K 2013 A Hirshfeld surface analysis and crystal structure of 2’-[1-(2-fluoro-phenyl)-1H-tetrazol-5-Yl]-4-methoxy-biphenyl-2-carbaldehyde Cryst. Struct. Theory Appl. 2 124

    CAS  Google Scholar 

  35. Spackman M A, McKinnon J J and Jayatilaka D 2008 Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals Cryst. Eng. Comm. 10 377

    CAS  Google Scholar 

  36. Reller L B, Weinstein M, Jorgensen J H and Ferraro M J 2009 Antimicrobial susceptibility testing: a review of general principles and contemporary practices Clin. Infec. Dis. 49 1749

    Article  Google Scholar 

  37. Sadowski J, Gasteiger J and Klebe G 1994 Comparison of automatic three-dimensional model builders using 639 X-ray structures J. Chem. Inf. Comput. Sci. 34 1000

    Article  CAS  Google Scholar 

  38. Cole J C, Nissink J W M and Taylor R 2005 Protein-ligand docking and virtual screening with GOLD. In Virtual Screening in Drug Discovery Shoichet B, and Alvarez J (Eds.) (Boca Raton, F L: Taylor & Francis Group) 379

  39. Robertson D R, Stephenson T A and Arthur T 1978 Cationic, Neutral and Anionic Complexes of Ruthenium(II) containing η6-Arene Ligands J. Organomet. Chem.162 121

    Article  CAS  Google Scholar 

  40. Ruiz-Ramirez L, Stephenson T A and Switkes E S 1973 New Ruthenium(III) and Ruthenium(II) Complexes containing Triphenylarsine and -phosphine and Other Ligands J. Chem. Soc. Dalton Trans. 1770

  41. Nakamoto K 1986 In Infrared and Raman spectra of inorganic and coordination compounds (New York: John Wiley and Sons) 978

  42. Il’in M A, Emel’yanov V A and Baidina I A 2008 Structure and synthesis of nitrosoruthenium trans-diammines [Ru(NO)(NH3)2Cl3] and [Ru(NO)(NH3)2(H2O)Cl2]Cl•H2O J. Struct. Chem. 49 1090

  43. Gowri S, Muthukumar M, Krishnaraj S, Viswanathamurthi P, Prabhakaran R and Natarajan K 2010 Ruthenium(II) unsymmetrical N2O2 tetradentate Schiff-base complexes: synthesis, characterization and catalytic studies J. Coord. Chem. 63 524

    Article  CAS  Google Scholar 

  44. Makhinya A N, Il’in M A, Baidina I A, Plyusnin P E, Alferova N I and Pishchur D P 2014 Structure, synthesis, and thermal properties of trans-[Ru(NO)(NH3)4(SO4)]NO3·H2O J. Struct. Chem. 55 311

  45. Sathiyaraj S, Ayyannan G and Jayabalakrishnan C 2014 Synthesis, spectral, DNA binding and cleavage properties of ruthenium(II) Schiff base complexes containing PPh3/AsPh3 as co-ligands J. Serb. Chem. Soc. 79 151

    Article  CAS  Google Scholar 

  46. Chen P Y, Zhang L, Zhu S G and Cheng G B 2017 Role of intermolecular interaction in crystal packing: A competition between halogen bond and electrostatic interaction J. Mol. Struct. 1131 250

    Article  CAS  Google Scholar 

  47. Taylor R 2014 Which intermolecular interactions have a significant influence on crystal packing? CrystEngComm. 16 6852

    Article  CAS  Google Scholar 

  48. Fu F, Liao K, Ma J, Cheng Z, Zheng D, Gao L, Liu C, Li S and Li W 2019 How intermolecular interactions influence electronic absorption spectra: insights from the molecular packing of uracil in condensed phases Phys. Chem. Chem. Phys. 21 4072

    Article  CAS  Google Scholar 

  49. He X, Benniston A C, Saarenpaa H, Lemmetyinen H, Tkachenko N V and Baisch U 2015 Polymorph crystal packing effects on charge transfer emission in the solid state Chem. Sci. 6 3525

    Article  CAS  Google Scholar 

  50. Kasuga N C, Saito Y, Sato H and Yamaguchi K 2015 Packing polymorphism in the crystal structure of 4,5-dimethoxy-2-nitrobenzyl acetate Acta Cryst. E 71 483

  51. Pratik S M, Nijamudheen A, Bhattacharya S and Datta A 2014 Color polymorphism: Understanding the diverse solid‐state packing and color in dimethyl‐3,6‐dichloro‐2, 5‐dihydroxyterephthalate Chem. Eur. J. 20 3218

    Article  CAS  Google Scholar 

  52. Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K and Li Z 2018 The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens Nat. Comm. 9 1

    Google Scholar 

  53. Cárdenas J C, Aguirre-Díaz L M, Galindo J F, Alí-Torres J, Ochoa-Puentes C, Echeverri M, Gómez-Lor B, Monge M Á, Gutiérrez-Puebla E and Sierra C A 2019 Nature of color diversity in phenylenevinylene-based polymorphs Cryst. Growth Des. 19 3913

    Article  Google Scholar 

  54. Zhu Q, Zhang Y, Nie H, Zhao Z, Liu S, Wong K S and Tang B Z 2015 Insight into the strong aggregation-induced emission of low-conjugated racemic C6-unsubstituted tetrahydropyrimidines through crystal-structure–property relationship of polymorphs Chem. Sci. 6 4690

    Article  CAS  Google Scholar 

  55. Matshwele J T P, Nareetsile F, Mapolelo D, Matshameko P, Leteane M, Nkwe D O and Odisitse S 2020 Synthesis of Mixed Ligand Ruthenium(II/III) complexes and their antibacterial evaluation on drug-resistant bacterial organisms J. Chem. 2020 1

    Article  Google Scholar 

  56. Li F, Collins J G and Keene F R 2015 Ruthenium complexes as antimicrobial agents Chem. Soc. Rev. 44 2529

    Article  CAS  Google Scholar 

  57. Gorle A K, Feterl M, Warner J M, Wallace L, Keene F R and Collins J G 2014 Tri- and tetra-nuclear polypyridyl ruthenium(II) complexes as antimicrobial agents Dalton Trans. 43 16713

  58. Yang Y, Liao G and Fu C 2018 Recent Advances on Octahedral Polypyridyl Ruthenium(II) complexes as antimicrobial agents Polymers (Basel) 10 650

  59. Tang B, Shen F, Wan D, Guo B H, Wang Y J, Yi Q Y and Liu Y J 2017 DNA-binding, molecular docking studies and biological activity studies of ruthenium(II) polypyridyl complexes RSC Adv. 7 34945

  60. Bratsos I, Jedner S, Gianferrara T and Alessio E 2007 Ruthenium anticancer compounds: challenges and expectations Chimia 61 692

    Article  CAS  Google Scholar 

  61. Meng X, Leyva M L, Jenny M, Gross I, Benosman S, Fricker B, Harlepp S, Hebraud P, Boos A, Wlosik P, Bischoff P, Sirlin C, Pfeffer M, Loeffler J P and Gaiddon C 2009 A Ruthenium-containing organometallic compound reduces tumor growth through induction of the endoplasmic reticulum stress gene CHOP Cancer Res. 69 5458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are highly indebted to Prof. A T Khan, the Vice-Chancellor of Aliah University, Kolkata and Prof. R A Lal, Department of Chemistry, North-Eastern Hill University, Shillong for their helpful discussions. Thanks are also due to the Head Incharge and Mr. Chandan Buragohain of CIF, IIT-Guwahati, Guwahati for recording NMR spectra. We are thankful to Dr. Pranjal Saikia, Dr. Samiul Haque and Nabajyoti Dhing from Department of Applied Sciences, Gauhati University, Guwahati for their help recording electronic and IR spectra. We thank the Head, USIC, Gauhati University, Guwahati for recording the crystallographic data. M K S thanks IOE and DST PURSE, University of Mysore, Mysuru. P. S. and P. M. are thankful to MHRD, Govt. of India assisted by the World Bank for TEQIP-III project grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEBAJANI BASUMATARY.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BASUMATARY, D., SHANKAR, M.K., BYRAPPA, K. et al. Polymorph of trans-dichlorotetrakis(pyridine-N)ruthenium(II) influenced by a dihydrazone: crystal structure, spectral, Hirshfeld surfaces, antimicrobial, toxicity and in silico docking studies. J Chem Sci 132, 133 (2020). https://doi.org/10.1007/s12039-020-01829-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01829-7

Keywords

Navigation