Abstract
A BINOL accelerated Ru-catalyzed ortho-selective C-H coupling of arenes tethered to 7-azaindoles is described with disulfides and diselenides under air. The thioether can be readily oxidized to sulfoxide and sulfone. The use of less expensive Ru-catalysis, substrate scope and scale-up are the important practical features.
Graphical Abstract
Ru-catalyzed ortho-selective C-H coupling of arenes tethered to 7-azaindoles with disulfides and diselenides has been accomplished under air. The use of less expensive Ru-catalysis, substrate scope and scale up are the important practical features.

This is a preview of subscription content, access via your institution.









References
For some recent reviews, see: (a) Schipper D J and Fagnou K 2011 Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials Chem. Mater. 23 1594; (b) Ackermann L 2011 Carboxylate-assisted transition-metal-catalyzed C−H bond functionalizations: Mechanism and scope Chem. Rev. 111 1315; (c) McMurray L, O’Hara F and Gaunt M J 2011 Recent developments in natural product synthesis using metal-catalysed C–H bond functionalization Chem. Soc. Rev. 40 1885; (d) Engle K M, Mei T S, Wasa M and Yu J Q 2012 Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions Acc. Chem. Res. 45 788; (e) Wencel-Delord J, Dröge T, Liu F and Glorius F 2011 Towards mild metal-catalyzed C–H bond activation Chem. Soc. Rev. 40 4740; (f) Brückl T, Baxter R D, Ishihara Y and Baran P S 2012 Innate and guided C–H Functionalization logic Acc. Chem. Res. 45 826; (g) Yamaguchi J, Yamaguchi A D and Itami K 2012 C-H Bond functionalization: emerging synthetic tools for natural products and pharmaceuticals Angew. Chem. Int. Ed. 51 8960; (h) Arockiam P B, Bruneau C and Dixneuf P H 2012 Ruthenium(II)-catalyzed C–H bond activation and functionalization Chem. Rev. 112 5879; (i) Rouquet G and Chatani N 2013 catalytic functionalization of C(sp2)-H and C(sp3)-H Bonds by using bidentate directing groups Angew. Chem., Int. Ed. 52 11726; (j) Ackermann L 2014 Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het–H bond functionalizations Acc. Chem. Res. 47 281; (k) Zhang X-S, Chen K and Shi Z-J 2014 Transition metal-catalyzed direct nucleophilic addition of C–H bonds to carbon-heteroatom double bonds Chem. Sci. 5 2146; (l) Segawa Y, Maekawa T and Itami K 2015 Synthesis of extended π-systems through C–H activation Angew. Chem. Int. Ed. 54 66; (m) Ye B and Cramer N 2015 Chiral cyclopentadienyls: Enabling ligands for asymmetric Rh(III)-catalyzed C–H functionalizations Acc. Chem. Res. 48 1308; (n) Gensch T, Hopkinson M N, Glorius F and Wencel-Delord J 2016 Mild metal-catalyzed C–H activation: examples and concepts Chem. Soc. Rev. 45 2900; (o) Iwasaki M and Nishihara Y 2016 Palladium-catalysed direct thiolation and selenation of aryl C–H bonds assisted by directing groups Dalton Trans. 45 15278
Thuillier A and Metzner P 1994 Sulfur reagents in organic synthesis (New York: Academic Press)
For metal-catalyzed cross-coupling approach, see: (a) Ley S V and Thomas A W 2003 Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation Angew. Chem. Int. Ed. 42 5400; (b) Taniguchi N and Onami T 2004 Magnesium-induced copper-catalyzed synthesis of unsymmetrical diaryl chalcogenide compounds from aryl iodide via cleavage of the Se−Se or S−S bond J. Org. Chem. 69 915; (c) Fernandez-Rodriguez M A, Shen Q and Hartwig J F 2006 A General and long-lived catalyst for the palladium-catalyzed coupling of aryl halides with thiols J. Am. Chem. Soc. 128 2180; (d) Rout L, Sen T K and Punniyamurthy T 2007 Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene Angew. Chem. Int. Ed. 46 5583; (e) Uyeda C, Tan Y, Fu G C and Peters J C 2013 A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (0 °C) J. Am. Chem. Soc. 135 9548; (f) Bastug G and Nolan S P 2013 Carbon–sulfur bond formation catalyzed by [Pd(IPr*OMe)(cin)Cl] (cin = cinnamyl) J. Org. Chem. 78 9303; (g) Qiao Z, Wei J and Jiang X 2014 Direct cross-coupling access to diverse aromatic sulfide: palladium-catalyzed double C–S bond construction using Na2S2O3 as a sulfurating reagent Org. Lett. 16 1212; (h) Arisawa M 2014 Synthesis of organosulfides using transition-metal-catalyzed substitution reactions: to construct exergonic reactions employing metal inorganic and organic co-substrate/co-product methods Tetrahedron Lett. 55 3391; (i) Shen C, Zhang P, Sun Q, Bai S, Hor T S A and Liu X 2015 Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation Chem. Soc. Rev. 44 291; (j) Oderinde M S, Frenette M, Robbins D W, Aquila B and Johannes J W 2016 Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals J. Am. Chem. Soc. 138 1760; (k) Jouffroy M, Kelly C B and Molander G A 2016 Thioetherification via photoredox/nickel dual catalysis Org. Lett. 18 876; (l) Gao C, Wu G, Min L, Liu M, Gao W, Ding J, Chen J, Huang X and Wu H 2017 Copper-catalyzed three-component coupling reaction of azoles, se powder, and aryl iodides J. Org. Chem. 82 250; (m) Wang P, Tang S, Huang P and Lei A 2017 Electrocatalytic oxidant-free dehydrogenative C−H/S−H cross-coupling Angew. Chem. Int. Ed. 56 3009; (n) Ivanova A and Arsenyan P 2018 Rise of diselenides: Recent advances in the synthesis of heteroarylselenides Coord. Chem. Rev. 370 55
For recent examples, see: (a) Asai T, Takeuchi T, Diffenderfer J and Sibley L D 2002 Identification of small-molecule inhibitors of nucleoside triphosphate hydrolase in Toxoplasma gondii Antimicrob. Agents Chemother. 46 2393; (b) Bagley M C, Davis T, Dix M C, Fusillo V, Pigeaux M, Rokicki M J and Kipling D 2009 Microwave-assisted ullmann C−S bond formation: synthesis of the P38α MAPK clinical candidate VX-745 J. Org. Chem. 74 8336; (c) Ibrahim D A 2009 Synthesis and biological evaluation of 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as a novel class of potential anti-tumor agents Eur. J. Med. Chem. 44 2776; (d) Wang Z, Wang Y, Li W, Mao F, Sun Y, Huang L and Li X 2014 Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of alzheimer’s disease ACS Chem. Neurosci. 5 952; (e) de Souza D, Mariano D O C, Nedel F, Schultze E, Campos V F, Seixas F, da Silva R S, Munchen T S, Ilha V, Dornelles L, Braga A L, Rocha J B T, Collares T and Rodrigues O E D 2015 New organochalcogen multitarget drug: synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives J. Med. Chem. 58 3329; (f) Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C and Tabarrini O 2015 Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity J. Med. Chem. 58 9601
For some recent examples, see: (a) Yang S, Sun J, He P, Deng X, Wang Z, Hu C, Ding G and Xie X 2015 Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch Chem. Mater. 27 2004; (b) Chaudhary S, Umar A and Mehta S K 2016 Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications Prog. Mater. Sci. 83 270
For some recent examples, see: (a) Wang B, Li P, Yu F, Song P, Sun X, Yang S, Lou Z and Han K 2013 A reversible fluorescence probe based on Se–BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells Chem. Commun. 49 1014; (b) Ahrens J, Böker B, Brandhorst K, Funk M and Brçring M 2013 Sulfur-bridged BODIPY DYEmers Chem. Eur. J. 19 11382; (c) Yu F, Li P, Wang B and Han K 2013 Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo J. Am. Chem. Soc. 135 7674; (d) Manjare S T, Kim Y and Churchill D G 2014 Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes Acc. Chem. Res. 47 2985; (e) Lou Z, Li P and Han K 2015 Redox-responsive fluorescent probes with different design strategies Acc. Chem. Res. 48 1358; (f) Ortgies S and Breder A 2017 Oxidative alkene functionalizations via selenium-π-acid catalysis ACS Catal. 7 5828
For Cu-catalyzed reaction, see: (a) Chen X, Hao X-S, Goodhue C E and Yu J-Q 2006 Cu(II)-Catalyzed functionalizations of aryl C−H bonds using O2 as an oxidant J. Am. Chem. Soc. 128 6790; (b) Tran L D, Popov I and Daugulis O 2012 Copper-promoted sulfenylation of sp2 C–H bonds J. Am. Chem. Soc. 134 18237; (c) Zhu L, Qiu X, Cao X, Xiao S, Xu X, Au C-T and Yin S-F 2015 Copper-mediated remote C–H bond chalcogenation of quinolines on the C5 position Org. Lett. 17 5528; (d) Gandeepan P, Koeller J and Ackermann L 2017 Expedient C–H chalcogenation of indolines and indoles by positional-selective copper catalysis ACS Catal. 7 1030; (e) Li Y, Liu Y-J and Shi B-F 2017 Copper-mediated thiolation of unactivated heteroaryl C−H bonds with disulfides under ligand- and metal-oxidant-free conditions Adv. Synth. Catal. 359 4117
For Co-catalyzed reaction, see: Gensch T, Klauck F J R and Glorius F 2016 Cobalt-catalyzed C-H thiolation through dehydrogenative cross-coupling Angew. Chem. Int. Ed. 55 11287
For Ni-catalyzed reaction, see: (a) Yan S-Y, Liu Y-J, Liu B, Liu Y-H and Shi B-F 2015 Nickel-catalyzed thiolation of unactivated aryl C–H bonds: efficient access to diverse aryl sulfides Chem. Commun. 51 4069; (b) Lin C, Li D, Wang B, Yao J and Zhang Y 2015 Direct ortho-thiolation of arenes and alkenes by nickel catalysis Org. Lett. 17 1328; (c) Wang X, Qiu R, Yan C, Reddy V P, Zhu L, Xu X and Yin S-F 2015 Nickel-catalyzed direct thiolation of C(sp3)–H bonds in aliphatic amides Org. Lett. 17 1970; (d) Yan S-Y, Liu Y-J, Liu B, Liu Y-H, Zhang Z-Z and Shi B-F 2015 Nickel-catalyzed direct thiolation of unactivated C(sp3)–H bonds with disulfides Chem. Commun. 51 7341; (e) Ye X, Peterson J L and Shi X 2015 Nickel-catalyzed directed sulfenylation of sp2 and sp3 C–H bonds Chem. Comm. 51 7863; (f) Müller T and Ackermann L 2016 Nickel-catalyzed C-H chalcogenation of anilines Chem. Eur. J. 22 14151
For Rh-catalyzed reaction, see: (a) Yang Y, Hou W, Qin L, Du J, Feng H, Zhou B and Li Y 2014 Rhodium-catalyzed directed sulfenylation of arene C-H bonds Chem. Eur. J. 20 416; (b) Xie W, Li B and Wang B 2016 Rh(III)-Catalyzed C7-thiolation and selenation of indolines J. Org. Chem. 81 396; (c) Yang S, Feng B and Yang Y 2017 Rh(III)-Catalyzed direct ortho-chalcogenation of phenols and anilines J. Org. Chem. 82 12430; (d) Vats T K, Mishra A and Deb I 2018 Rhodium-catalyzed direct and selective ortho C−H chalcogenation of N-(Hetero)aryl-7-azaindoles Adv. Synth. Catal. 360 2291
For Ru-catalyzed reaction, see: (a) Mandal A, Dana S, Sahoo H, Grandhi G S and Baidya M 2017 Ruthenium(II)-catalyzed ortho-C–H chalcogenation of benzoic acids via weak O-coordination: synthesis of chalcogenoxanthones Org. Lett. 19 2430; (b) Ma W, Weng Z, Rogge T, Gu L, Lin J, Peng A, Luo X, Gou X and Ackermann L 2018 Ruthenium(II)-catalyzed C-H chalcogenation of anilides Adv. Synth. Catal. 360 704; (c) Ma W, Weng Z, Fang X, Gu L, Song Y and Ackermann L 2019 Ruthenium-catalyzed C–H selenylations of benzamides Eur. J. Org. Chem. 41
For Pd-catalyzed reaction, see: (a) Iwasaki M, Iyanaga M, Tsuchiya Y, Nishimura Y, Li W, Li Z and Nishihara Y 2014 Palladium-catalyzed direct thiolation of aryl C-H bonds with disulfides Chem. Eur. J. 20 2459; (b) Iwasaki M, Kaneshika W, Tsuchiya Y, Nakajima K and Nishihara Y 2014 Palladium-catalyzed peri-selective chalcogenation of naphthylamines with diaryl disulfides and diselenides via C–H bond cleavage J. Org. Chem. 79 11330; (c) Qiu R, Reddy V R, Iwasaki T and Kambe N 2015 The palladium-catalyzed intermolecular C–H chalcogenation of arenes J. Org. Chem. 80 367
For biological properties of 7-azaindoles, see: (a) Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K and Hirth P 2012 Vemurafenib: the first drug approved for BRAF-mutant cancer Nat. Rev. Drug Discov. 11 873; (b) Mérour J Y, Buron F, Plé K, Bonnet P and Routier S 2014 The azaindole framework in the design of kinase inhibitors Molecules 19 19935; (c) Zhang Y, Liu B, Wu X, Li R, Ning X, Liu Y, Liu Z, Ge Z, Li R and Yin Y 2015 New pyridin-3-ylmethyl carbamodithioic esters activate pyruvate kinase M2 and potential anticancer lead compounds Bioorg. Med. Chem. 23 4815; (d) Paczal A, Balint B, Weber C, Szabo Z B, Ondi L, Theret I, De Ceuninck F, Bernard C, Ktorza A, Perron-Sierra F and Kotschy A 2016 Structure–activity relationship of azaindole-based glucokinase activators J. Med. Chem. 59 687
For examples, see: (a) Qian G, Hong X, Liu B, Mao H and Xu B 2014 Rhodium-catalyzed regioselective C–H chlorination of 7-azaindoles using 1,2-dichloroethane Org. Lett. 16 5294; (b) Li S-S, Wang C-Q, Lin H, Zhang X-M and Dong L 2015 Rhodium(III)-catalyzed oxidative annulation of 7-azaindoles and alkynes via double C–H activation Org. Lett. 17 3018; (c) Li W-H, Wu L, Li S-S, Liu C-F, Zhang G-T and Dong L 2016 Rhodium-catalyzed hydrogen-releasing ortho-alkenylation of 7-azaindoles Chem. Eur. J. 22 17926; (d) Mishra A, Vats T K and Deb I 2016 Ruthenium-catalyzed direct and selective C–H cyanation of N-(Hetero)aryl-7-azaindoles J. Org. Chem. 81 6525; (e) Liu B, Wang X, Ge Z and Li R 2016 Regioselective Ir(III)-catalyzed C–H alkynylation directed by 7-azaindoles Org. Biomol. Chem. 14 2944; (f) Mishra A, Vats T K, Nair M P, Das A and Deb I 2017 Rhodium-catalyzed sp2 C–H acetoxylation of N-aryl azaindoles/N-Heteroaryl indolines J. Org. Chem. 82 12406; (g) Jeon M, Park J, Dey P, Oh Y, Oh H, Han S, Um S H, Kim H S, Mishra N K and Kim I S 2017 Site-selective Rhodium(III)-catalyzed C−H amination of 7-azaindoles with anthranils: Synthesis and anticancer evaluation Adv. Synth. Catal. 359 3471; (h) Gramage-Doria Achelle S, Bruneau C, Guen F R-I, Dorcet V, Roisnel T 2018 Ru(II)-Catalyzed C–H aminocarbonylation of N-(Hetero)aryl-7-azaindoles with isocyanates J. Org. Chem. 83 4641; (i) Pan C, Wang Y, Wu C and Yu J-T 2018 Iridium-catalyzed C–H phosphoramidation of N-aryl-7-azaindoles with phosphoryl azides Org. Biomol. Chem. 16 3711; (j) Sun J-S, Liu M, Zhang J and Dong L 2018 Cobalt(III)-catalyzed C–H amidation of 7-azaindoles with dioxazolones: synthesis of 7-azaindole amidated derivatives J. Org. Chem. 83 10555; (k) Chun R, Kim S, Han S H, Pandey A K, Mishra N K and Kim I S 2018 Site-selective C–H nitration of N-aryl-7-azaindoles under palladium(II) catalysis Tetrahedron Lett. 59 3848
For some recent examples for Ru-catalyzed C-H activation, see: (a) Nareddy P, Jordan F, Brenner-Moyer S E and Szostak M 2016 Ruthenium(II)-catalyzed regioselective C–H arylation of cyclic and N,N-dialkyl benzamides with boronic acids by weak coordination ACS Catal. 6 4755; (b) Teskey C J, Sohel S M A, Bunting D L, Modha S G and Greaney M F 2017 Domino N-/C-arylation via in situ generation of a directing group: Atom-efficient arylation using diaryliodonium salts Angew. Chem. Int. Ed. 56 5263; (c) Wu Y and Zhou B 2017 Ruthenium-catalyzed direct hydroxymethylation of aryl C–H bonds ACS Catal. 7 2213; (d) Sarkar T, Pradhan S and Punniyamurthy T 2018 Ruthenium(II)-catalyzed positional selective C–H oxygenation of N-aryl-2-pyrimidines J. Org. Chem. 83 6444
Shu S, Fan Z, Yao Q and Zhang A 2016 Ru(II)-catalyzed direct C(sp2)–H activation/selenylation of arenes with selenyl chlorides J. Org. Chem. 81 5263
(a) Hong C S, Seo J Y and Yum Y K 2007 N-Arylation of azaindoles in LiCl-mediated catalytic CuI reactions Tetrahedron Lett. 48 4831; (b) Singh D, Deobald A M, Camargo L R S, Tabarelli G, Rodrigues O E D and Braga A L 2010 An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/base Org. Lett. 12 3288; (c) Natarajan P, Sharma H, Kaur M and Sharma P 2015 Haloacid/dimethyl sulfoxide-catalyzed synthesis of symmetrical disulfides by oxidation of thiols Tetrahedron Lett. 56 5578
(a) Lucas H J and Kennedy E R 1939 Iodobenzene Org. Synth. 19 55; (b) Chi Y, Zhang W-X and Xi Z 2014 Oxidant-switchable selective synthesis of 2-aminobenzimidazoles via C–H amination/acetoxylation of guanidines Org. Lett. 16 6274
Acknowledgement
We thank the Science and Engineering Research Board (CRG-2018-000406) for the generous financial support. We also thank Central Instrumental Facility, Indian Institute of Technology Guwahati for NMR and DST-FIST for HRMS analyses.
Author information
Authors and Affiliations
Corresponding author
Additional information
Special Issue on 150 years of the Periodic Table
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
BAG, R., SARKAR, T., KUMAR, S.V. et al. BINOL accelerated Ru(II)-catalyzed regioselective C-H functionalization of arenes with disulfides and diselenides. J Chem Sci 131, 115 (2019). https://doi.org/10.1007/s12039-019-1709-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12039-019-1709-3
Keywords
- Arenes
- C-H functionalization
- regioselective
- Ru-catalysis
- chalcogen