Herzberg G and Mrozowski S 1951 Molecular spectra and molecular structure. I. Spectra of diatomic molecules Am. J. Phys. 19 390
Google Scholar
Huber K P and Herzberg G 1979 Molecular Structure and Molecular Spectra. IV. Constants of Diatomic Molecules (New York: Van Rostrand-Reinhold)
Google Scholar
Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 83 1637
CAS
Google Scholar
Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Defining the hydrogen bond: An account (IUPAC Technical Report) Pure Appl. Chem. 83 1619
CAS
Google Scholar
Legon A C 2010 The halogen bond: An interim perspective Phys. Chem. Chem. Phys. 12 7736
CAS
Google Scholar
Metrangolo P and Resnati G 2001 Halogen Bonding: A Paradigm in Supramolecular Chemistry Chem. – A Eur. J. 7 2511
CAS
Google Scholar
Alkorta I, Blanco F, Solimannejad M and Elguero J 2008 Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases J. Phys. Chem. A 112 10856
CAS
PubMed
Google Scholar
Clark T, Hennemann M, Murray J S and Politzer P 2007 Halogen bonding: The σ-hole J. Mol. Model. 13 291
CAS
PubMed
Google Scholar
Wang W, Ji B and Zhang Y 2009 Chalcogen bond: A sister noncovalent bond to halogen bond J. Phys. Chem. A 113 8132
PubMed
Google Scholar
Manna D and Mugesh G 2012 Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: An unusual mechanistic pathway involving cooperative chalcogen and halogen bonding J. Am. Chem. Soc. 134 4269
CAS
PubMed
Google Scholar
Bleiholder C, Werz D B, Köppel H and Gleiter R 2006 Theoretical investigations on chalcogen − chalcogen interactions: What makes these nonbonded interactions bonding? J. Am. Chem. Soc. 128 2666
CAS
PubMed
Google Scholar
Sanz P, Mó O and Yáñez M 2003 Characterization of intramolecular hydrogen bonds and competitive chalcogen–chalcogen interactions on the basis of the topology of the charge density Phys. Chem. Chem. Phys. 5 2942
CAS
Google Scholar
Del Bene J E, Alkorta I, Sanchez-Sanz G and Elguero J 2011 Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl) J. Phys. Chem. A 115 13724
PubMed
Google Scholar
Zahn S, Frank R, Hey-Hawkins E and Kirchner B 2011 Pnicogen bonds: A new molecular linker? Chem. Eur. J. 17 6034
CAS
PubMed
Google Scholar
Scheiner S 2011 A new noncovalent force: Comparison of P···N interaction with hydrogen and halogen bonds J. Chem. Phys. 134 94315
Google Scholar
Mani D and Arunan E 2013 The X–C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions Phys. Chem. Chem. Phys. 15 14377
CAS
Google Scholar
Mani D and Arunan E 2014 The X–C··· π (X = F, Cl, Br, Cn) carbon bond J. Phys. Chem. A 118 10081
CAS
PubMed
Google Scholar
Thomas S P, Pavan M S and Guru Row T N 2014 Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis Chem. Commun. 50 49
CAS
Google Scholar
Bauzá A, Mooibroek T J and Frontera A 2013 Tetrel-bonding interaction: Rediscovered supramolecular force? Angew. Chemie - Int. Ed. 52 12317
Google Scholar
Grabowski S J 2014 Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction Phys. Chem. Chem. Phys. 16 1824
CAS
Google Scholar
Grabowski S J 2014 Boron and other triel Lewis acid centers: From hypovalency to hypervalency ChemPhysChem 15 2985
CAS
PubMed
Google Scholar
Kollman P A, Liebman J F and Allen L C 1970 Lithium bond J. Am. Chem. Soc. 92 1142
CAS
Google Scholar
Ault B S and Pimenter G C 1975 Matrix isolation infrared studies of lithium bonding J. Phys. Chem. 79 621
CAS
Google Scholar
McCleskey T M, Ehler D S, Keizer T S, Asthagiri D N, Pratt L R, Michalczyk R and Scott B L 2007 Beryllium displacement of H + from strong hydrogen bonds Angew. Chemie 119 2723
Google Scholar
Albrecht L, Boyd R J, Mó O and Yáñez M 2012 Cooperativity between hydrogen bonds and beryllium bonds in (H2O)nBeX2 (n = 1–3, X = H, F) complexes. A new perspective Phys. Chem. Chem. Phys. 14 14540
CAS
PubMed
Google Scholar
Dunlap B I, Connolly J W D and Sabin J R 1979 On first-row diatomic molecules and local density models J. Chem. Phys. 71 4993
CAS
Google Scholar
Hajigeorgiou P G 2010 An extended Lennard-Jones potential energy function for diatomic molecules: Application to ground electronic states J. Mol. Spectrosc. 263 101
CAS
Google Scholar
Peterson K A, Kendall R A and Dunning T H 1993 Benchmark calculations with correlated molecular wave functions. III. Configuration interaction calculations on first row homonuclear diatomics J. Chem. Phys. 99 9790
CAS
Google Scholar
Peterson K A, Wilson A K, Woon D E and Dunning Jr. T H 1997 Benchmark calculations with correlated molecular wave functions XII. Core correlation effects on the homonuclear diatomic molecules B2-F2 Theor. Chem. Acc. 97 251
CAS
Google Scholar
Binkley J S and Frisch M J 1983 ab initio determination of bond dissociation energies: The first-row diatomics co, N2, NO, O2, and F2 Int. J. Quantum Chem. 24 331
Google Scholar
Painter G S and Averill F W 1982 Bonding in the first-row diatomic molecules within the local spin-density approximation Phys. Rev. B 26 1781
CAS
Google Scholar
Ghanty T K and Ghosh S K 1991 Electronegativity and covalent binding in homonuclear diatomic molecules J. Phys. Chem. 95 6512
CAS
Google Scholar
Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 A systematic theoretical investigation of the valence excited states of the diatomic molecules B2, C2, N2 and O2 Theor. Chem. Acc. 105 227
Google Scholar
Wang J, Clark B J, Schmider H and Smith V H 1996 Topological analysis of electron momentum densities and the bond directional principle: The first-row hydrides, AH, and homonuclear diatomic molecules, A2 Can. J. Chem. 74 1187
CAS
Google Scholar
Driessler F and Kutzelnigg W 1976 Analysis of the chemical bond Theor. Chim. Acta 43 1
CAS
Google Scholar
Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions Phys. Rev. Lett. 75 1687
CAS
Google Scholar
Bradley C C, Sackett C A and Hulet R G 1997 Bose-Einstein condensation of lithium: Observation of limited condensate number Phys. Rev. Lett. 78 985
CAS
Google Scholar
Herzberg G 1929 Zum Aufbau der zweiatomigen Moleküle Zeitschrift für Phys. 57 601
CAS
Google Scholar
Herzberg L 1933 Über ein neues Bandensystem des Berylliumoxyds und die Struktur des Be O-Moleküls Zeitschrift für Phys. 84 571
CAS
Google Scholar
Bondybey V E and English J H 1984 Laser vaporization of beryllium: Gas phase spectrum and molecular potential of Be2 J. Chem. Phys. 80 568
CAS
Google Scholar
Merritt J M, Bondybey V E and Heaven M C 2009 Beryllium Dimer—Caught in the act of bonding Science 324 1548
CAS
PubMed
Google Scholar
Douglas A E and Herzberg G 1940 Spectroscopic evidence of the B2 molecule and determination of its structure Can. J. Res. 18 165
Google Scholar
Graham W R M and Weltner W 1976 B atoms, B2 and H2BO molecules: ESR and optical spectra at 4 °K J. Chem. Phys. 65 1516
CAS
Google Scholar
Dupuis M and Liu B 1978 The ground electronic state of B2 J. Chem. Phys. 68 2902
CAS
Google Scholar
Langhoff S R and Bauschlicher Jr C W 1991 Theoretical study of the spectroscopy of B2 J. Chem. Phys. 95 5882
CAS
Google Scholar
Boggio-Pasqua M, Halvick P, Rayez M-T, Rayez J-C and Robbe J-M 1998 Ab initio study of the potential energy surfaces for the reaction C + CH → C2 + H J. Phys. Chem. A 102 2009
CAS
Google Scholar
Martin M 1992 C2 spectroscopy and kinetics J. Photochem. Photobiol. A Chem. 66 263
CAS
Google Scholar
Van Orden A and Saykally R J 1998 Small carbon clusters: Spectroscopy, structure, and energetics Chem. Rev. 98 2313
Google Scholar
Boggio-Pasqua M, Voronin A I, Halvick P and Rayez J-C 2000 Analytical representations of high level ab initio potential energy curves of the C2 molecule J. Mol. Struct. THEOCHEM 531 159
CAS
Google Scholar
Weltner Jr W and Van Zee R J 1989 Carbon molecules, ions, and clusters Chem. Rev. 89 1713
CAS
Google Scholar
Douay M, Nietmann R and Bernath P F 1988 The discovery of two new infrared electronic transitions of C2: B1Δg-A1Πu and B′ 1Σg + -A1Πu J. Mol. Spectrosc. 131 261
CAS
Google Scholar
Douay M, Nietmann R and Bernath P F 1988 New observations of the A1Πu-X1Σg + transition (Phillips system) of C2 J. Mol. Spectrosc. 131 250
CAS
Google Scholar
Pradhan A D, Partridge H and Bauschlicher C W 1994 The dissociation energy of CN and C2 J. Chem. Phys. 101 3857
CAS
Google Scholar
Mulliken R S 1939 Note on electronic states of diatomic carbon, and the carbon-carbon bond Phys. Rev. 56 778
CAS
Google Scholar
Su P, Wu J, Gu J, Wu W, Shaik S and Hiberty P C 2011 Bonding conundrums in the C2 molecule: A valence bond study J. Chem. Theory Comput. 7 121
CAS
PubMed
Google Scholar
Shaik S, Danovich D, Wu W, Su P, Rzepa H S and Hiberty P C 2012 Quadruple bonding in C 2 and analogous eight-valence electron species Nat. Chem. 4 195
CAS
Google Scholar
von RaguéSchleyer P, Maslak P, Chandrasekhar J and Grev R S 1993 Is a CC quadruple bond possible? Tetrahedron Lett. 34 6387
Google Scholar
Lofthus A and Krupenie P H 1977 The spectrum of molecular nitrogen J. Phys. Chem. Ref. Data 6 113
CAS
Google Scholar
Huber K-P 2013 Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Location: Springer Science & Business Media)
Google Scholar
Krupenie P H 1972 The spectrum of molecular oxygen J. Phys. Chem. Ref. Data 1 423
CAS
Google Scholar
Matsunaga F M and Watanabe K 1967 Total and photoionization coefficients and dissociation continua of O2 in the 580–1070 Å region Sci. Light 16 31
CAS
Google Scholar
Gale H G and Monk G S 1924 The spectrum of fluorine Astrophys. J. 59 125
CAS
Google Scholar
Gale H G and Monk G S 1929 The band spectrum of fluorine Astrophys. J. 69 77
CAS
Google Scholar
Andrychuk D 1951 The Raman spectrum of fluorine Can. J. Phys. 29 151
CAS
Google Scholar
Tanaka Y and Yoshino K 1972 Absorption spectra of Ne2 and HeNe molecules in the vacuum‐uv region J. Chem. Phys. 57 2964
CAS
Google Scholar
Pauling L 1960 The Nature of the Chemical Bond (Ithaca, NY: Cornell University Press)
Google Scholar
Bader R F W, Keaveny I and Cade P E 1967 Molecular charge distributions and chemical binding. II. First‐row diatomic hydrides, AH J. Chem. Phys. 47 3381
Bader R F W 1990 Atoms in Molecules: A Quantum Theory (New York: Oxford University Press)
Google Scholar
Popelier P L A, Aicken F M and O’Brien S E 2000 Atoms in molecules Chem. Model. Appl. Theory 1 143
CAS
Google Scholar
Amezaga N J M, Pamies S C, Peruchena N M and Sosa G L 2009 Halogen bonding: A study based on the electronic charge density J. Phys. Chem. A 114 552
Google Scholar
Cremer D and Kraka E 1984 Chemical bonds without bonding electron density—Does the difference electron‐density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. Eng. 23 627
Google Scholar
Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J and Yang W 2010 Revealing noncovalent interactions J. Am. Chem. Soc. 132 6498
CAS
PubMed
PubMed Central
Google Scholar
Contreras-García J, Yang W and Johnson E R 2011 Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions J. Phys. Chem. A 115 12983
PubMed
Google Scholar
Contreras-García J, Johnson E R, Keinan S, Chaudret R, Piquemal J-P, Beratan D N and Yang W 2011 NCIPLOT: A program for plotting noncovalent interaction regions J. Chem. Theory Comput. 7 625
PubMed
PubMed Central
Google Scholar
Zhao D-X and Yang Z-Z 2014 Theoretical exploration of the potential and force acting on one electron within a molecule J. Phys. Chem. A 118 9045
CAS
PubMed
Google Scholar
Zhao D and Yang Z 2014 Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM‐MO diagram J. Comput. Chem. 35 965
CAS
PubMed
Google Scholar
Zhao D, Gong L and Yang Z 2002 Exploration of the potential acting on an electron within diatomic molecules Chin. Sci. Bull. 47 635
Google Scholar
Bartashevich E and Tsirelson V 2018 A comparative view on the potential acting on an electron in a molecule and the electrostatic potential through the typical halogen bonds J. Comput. Chem. 39 573
CAS
PubMed
Google Scholar
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B and Petersson G A 2009 Gaussian 09 Revision D. 01, 2009 (Wallingford CT: Gaussian Inc.)
Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Györffy W, Kats D, Korona T and Lindh R 2015 MOLPRO, Version 2015.1, a Package of Ab Initio Programs (Cardiff, Wales, UK: Univ. Cardiff Chem. Consult.)
Keith T A 2014 AIMAll (Version 14.11.23), TK Gristmill Software, Overland Park KS, USA
Glendening E D, Landis C R and Weinhold F 2013 NBO 6.0: Natural bond orbital analysis program J. Comput. Chem. 34 1429
CAS
PubMed
Google Scholar
Glendening E D and Weinhold F 1998 Natural resonance theory: I. General formalism J. Comput. Chem. 19 593
CAS
Google Scholar
Lu T and Chen F 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comput. Chem. 33 580
Google Scholar
Bacskay G B and Nordholm S 2017 Covalent bonding in the hydrogen molecule J. Phys. Chem. A 121 9330
CAS
PubMed
Google Scholar
Aziz R A and Slaman M J 1989 The Ne-Ne interatomic potential revisited Chem. Phys. 130 187
CAS
Google Scholar
Emsley J 1998 The Elements (Oxford; New York: Clarendon Press; Oxford University Press)
Heaven M C, Bondybey V E, Merritt J M and Kaledin A L 2011 The unique bonding characteristics of beryllium and the Group IIA metals Chem. Phys. Lett. 506 1
CAS
Google Scholar
Luo Y-R 2003 Handbook of Bond dissociation energies In Organic Compounds (Boca Raton: CRC Press) p. 89
Sudhakar P V and Lammertsma K 1993 Bond properties of Be3–7 clusters J. Chem. Phys. 99 7929
CAS
Google Scholar
Cao W L, Gatti C, MacDougall P J and Bader R F W 1987 On the presence of non-nuclear attractors in the charge distributions of Li and Na clusters Chem. Phys. Lett. 141 380
CAS
Google Scholar
Vries R Y de, Briels W J, Fell D, Velde G te and Baerends E J 1996 Charge density study with the Maximum Entropy Method on model data of silicon. A search for non-nuclear attractors Can. J. Chem. 74 1054
Google Scholar
Iversen B B, Larsen F K, Souhassou M and Takata M 1995 Experimental evidence for the existence of non-nuclear maxima in the electron‐density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method Acta Crystallogr. Sect. B 51 580
Google Scholar
Platts J A, Overgaard J, Jones C, Iversen B B and Stasch A 2010 First experimental characterization of a non-nuclear attractor in a dimeric magnesium (I) compound J. Phys. Chem. A 115 194
PubMed
Google Scholar
Brea O and Corral I 2018 Super strong Be–Be bonds: Theoretical insight into the electronic structure of Be–Be complexes with radical ligands J. Phys. Chem. A 122 2258
CAS
PubMed
Google Scholar
Mó O, Yáñez M, Eckert-Maksić M, Maksić Z B, Alkorta I and Elguero J 2005 Periodic trends in bond dissociation energies. A theoretical study J. Phys. Chem. A 109 4359
PubMed
Google Scholar