Skip to main content

Chemical bonding in Period 2 homonuclear diatomic molecules: a comprehensive relook

Abstract

Theoretical and experimental studies of bonding in the main group homonuclear diatomic molecules have been pursued for many years, and they possess serious challenges for scientists. Most of the early experimental work have been carried out by Herzberg.1,2 We take a relook at the bonding motifs of Period 2 homonuclear diatomic molecules (from Li2 to Ne2) using varieties of quantum chemical tools, commonly used for intermolecular bonding/interactions now. The methods employed include Atoms in Molecules (AIM), Non-covalent Index plot (NCI), Electrostatic potential (ESP), and Potential Acting on one Electron in a Molecule (PAEM). The spectroscopic constants i.e., equilibrium bond distances (re), harmonic frequencies (ω), bond dissociation energies (De) have all been evaluated using high-level ab initio methods and critically compared with the experimental results. Multi-reference calculations (CASSCF) on B2 and C2 have been carried out as they have a large number of low lying electronic states. Bonding within these homonuclear diatomic molecules show all the diversities that are encountered in inter/intra-molecular bonding in chemistry. Based on the AIM analysis, these 8 homonuclear diatomic molecules could be divided into three different groups, based on the correlation between binding energy and the electron density at the bond critical point. However, PAEM/ESP analysis allows us to analyse all eight of them as one group having a good correlation between binding energy and the PAEM/ESP at the critical point between the two atoms. Our results highlight the arbitrariness in relying on some computational tools to characterize a bond as covalent (shared) or ionic/electrostatic (closed). In contrast, they also show the usefulness of the various methods in exploring similarities and differences in bonding. We propose that from Li2 to Ne2, all homonuclear diatomic molecules are bound by ‘chemical bonds’.

Graphic abstract

The Period 2 homo-nuclear diatomic ‘molecules’ from the ‘covalent Li2’ to the ‘van der Waals Ne2’ show a rich diversity of 'bonds' that one can see in all inter- and intra-molecular interactions encountered in physics, chemistry and biology. Here, we show that these display a continuum in ‘chemical bonds!’

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. Herzberg G and Mrozowski S 1951 Molecular spectra and molecular structure. I. Spectra of diatomic molecules Am. J. Phys. 19 390

    Google Scholar 

  2. Huber K P and Herzberg G 1979 Molecular Structure and Molecular Spectra. IV. Constants of Diatomic Molecules (New York: Van Rostrand-Reinhold)

    Google Scholar 

  3. Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 83 1637

    CAS  Google Scholar 

  4. Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Defining the hydrogen bond: An account (IUPAC Technical Report) Pure Appl. Chem. 83 1619

    CAS  Google Scholar 

  5. Legon A C 2010 The halogen bond: An interim perspective Phys. Chem. Chem. Phys. 12 7736

    CAS  Google Scholar 

  6. Metrangolo P and Resnati G 2001 Halogen Bonding: A Paradigm in Supramolecular Chemistry Chem. – A Eur. J. 7 2511

    CAS  Google Scholar 

  7. Alkorta I, Blanco F, Solimannejad M and Elguero J 2008 Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases J. Phys. Chem. A 112 10856

    CAS  PubMed  Google Scholar 

  8. Clark T, Hennemann M, Murray J S and Politzer P 2007 Halogen bonding: The σ-hole J. Mol. Model. 13 291

    CAS  PubMed  Google Scholar 

  9. Wang W, Ji B and Zhang Y 2009 Chalcogen bond: A sister noncovalent bond to halogen bond J. Phys. Chem. A 113 8132

    PubMed  Google Scholar 

  10. Manna D and Mugesh G 2012 Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: An unusual mechanistic pathway involving cooperative chalcogen and halogen bonding J. Am. Chem. Soc. 134 4269

    CAS  PubMed  Google Scholar 

  11. Bleiholder C, Werz D B, Köppel H and Gleiter R 2006 Theoretical investigations on chalcogen − chalcogen interactions:  What makes these nonbonded interactions bonding? J. Am. Chem. Soc. 128 2666

    CAS  PubMed  Google Scholar 

  12. Sanz P, Mó O and Yáñez M 2003 Characterization of intramolecular hydrogen bonds and competitive chalcogen–chalcogen interactions on the basis of the topology of the charge density Phys. Chem. Chem. Phys. 5 2942

    CAS  Google Scholar 

  13. Del Bene J E, Alkorta I, Sanchez-Sanz G and Elguero J 2011 Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl) J. Phys. Chem. A 115 13724

    PubMed  Google Scholar 

  14. Zahn S, Frank R, Hey-Hawkins E and Kirchner B 2011 Pnicogen bonds: A new molecular linker? Chem. Eur. J. 17 6034

    CAS  PubMed  Google Scholar 

  15. Scheiner S 2011 A new noncovalent force: Comparison of P···N interaction with hydrogen and halogen bonds J. Chem. Phys. 134 94315

    Google Scholar 

  16. Mani D and Arunan E 2013 The X–C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions Phys. Chem. Chem. Phys. 15 14377

    CAS  Google Scholar 

  17. Mani D and Arunan E 2014 The X–C··· π (X = F, Cl, Br, Cn) carbon bond J. Phys. Chem. A 118 10081

    CAS  PubMed  Google Scholar 

  18. Thomas S P, Pavan M S and Guru Row T N 2014 Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis Chem. Commun. 50 49

    CAS  Google Scholar 

  19. Bauzá A, Mooibroek T J and Frontera A 2013 Tetrel-bonding interaction: Rediscovered supramolecular force? Angew. Chemie - Int. Ed. 52 12317

    Google Scholar 

  20. Grabowski S J 2014 Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction Phys. Chem. Chem. Phys. 16 1824

    CAS  Google Scholar 

  21. Grabowski S J 2014 Boron and other triel Lewis acid centers: From hypovalency to hypervalency ChemPhysChem 15 2985

    CAS  PubMed  Google Scholar 

  22. Kollman P A, Liebman J F and Allen L C 1970 Lithium bond J. Am. Chem. Soc. 92 1142

    CAS  Google Scholar 

  23. Ault B S and Pimenter G C 1975 Matrix isolation infrared studies of lithium bonding J. Phys. Chem. 79 621

    CAS  Google Scholar 

  24. McCleskey T M, Ehler D S, Keizer T S, Asthagiri D N, Pratt L R, Michalczyk R and Scott B L 2007 Beryllium displacement of H + from strong hydrogen bonds Angew. Chemie 119 2723

    Google Scholar 

  25. Albrecht L, Boyd R J, Mó O and Yáñez M 2012 Cooperativity between hydrogen bonds and beryllium bonds in (H2O)nBeX2 (n = 1–3, X = H, F) complexes. A new perspective Phys. Chem. Chem. Phys. 14 14540

    CAS  PubMed  Google Scholar 

  26. Dunlap B I, Connolly J W D and Sabin J R 1979 On first-row diatomic molecules and local density models J. Chem. Phys. 71 4993

    CAS  Google Scholar 

  27. Hajigeorgiou P G 2010 An extended Lennard-Jones potential energy function for diatomic molecules: Application to ground electronic states J. Mol. Spectrosc. 263 101

    CAS  Google Scholar 

  28. Peterson K A, Kendall R A and Dunning T H 1993 Benchmark calculations with correlated molecular wave functions. III. Configuration interaction calculations on first row homonuclear diatomics J. Chem. Phys. 99 9790

    CAS  Google Scholar 

  29. Peterson K A, Wilson A K, Woon D E and Dunning Jr. T H 1997 Benchmark calculations with correlated molecular wave functions XII. Core correlation effects on the homonuclear diatomic molecules B2-F2 Theor. Chem. Acc. 97 251

    CAS  Google Scholar 

  30. Binkley J S and Frisch M J 1983 ab initio determination of bond dissociation energies: The first-row diatomics co, N2, NO, O2, and F2 Int. J. Quantum Chem. 24 331

    Google Scholar 

  31. Painter G S and Averill F W 1982 Bonding in the first-row diatomic molecules within the local spin-density approximation Phys. Rev. B 26 1781

    CAS  Google Scholar 

  32. Ghanty T K and Ghosh S K 1991 Electronegativity and covalent binding in homonuclear diatomic molecules J. Phys. Chem. 95 6512

    CAS  Google Scholar 

  33. Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 A systematic theoretical investigation of the valence excited states of the diatomic molecules B2, C2, N2 and O2 Theor. Chem. Acc. 105 227

    Google Scholar 

  34. Wang J, Clark B J, Schmider H and Smith V H 1996 Topological analysis of electron momentum densities and the bond directional principle: The first-row hydrides, AH, and homonuclear diatomic molecules, A2 Can. J. Chem. 74 1187

    CAS  Google Scholar 

  35. Driessler F and Kutzelnigg W 1976 Analysis of the chemical bond Theor. Chim. Acta 43 1

    CAS  Google Scholar 

  36. Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions Phys. Rev. Lett. 75 1687

    CAS  Google Scholar 

  37. Bradley C C, Sackett C A and Hulet R G 1997 Bose-Einstein condensation of lithium: Observation of limited condensate number Phys. Rev. Lett. 78 985

    CAS  Google Scholar 

  38. Herzberg G 1929 Zum Aufbau der zweiatomigen Moleküle Zeitschrift für Phys. 57 601

    CAS  Google Scholar 

  39. Herzberg L 1933 Über ein neues Bandensystem des Berylliumoxyds und die Struktur des Be O-Moleküls Zeitschrift für Phys. 84 571

    CAS  Google Scholar 

  40. Bondybey V E and English J H 1984 Laser vaporization of beryllium: Gas phase spectrum and molecular potential of Be2 J. Chem. Phys. 80 568

    CAS  Google Scholar 

  41. Merritt J M, Bondybey V E and Heaven M C 2009 Beryllium Dimer—Caught in the act of bonding Science 324 1548

    CAS  PubMed  Google Scholar 

  42. Douglas A E and Herzberg G 1940 Spectroscopic evidence of the B2 molecule and determination of its structure Can. J. Res. 18 165

    Google Scholar 

  43. Graham W R M and Weltner W 1976 B atoms, B2 and H2BO molecules: ESR and optical spectra at 4 °K J. Chem. Phys. 65 1516

    CAS  Google Scholar 

  44. Dupuis M and Liu B 1978 The ground electronic state of B2 J. Chem. Phys. 68 2902

    CAS  Google Scholar 

  45. Langhoff S R and Bauschlicher Jr C W 1991 Theoretical study of the spectroscopy of B2 J. Chem. Phys. 95 5882

    CAS  Google Scholar 

  46. Boggio-Pasqua M, Halvick P, Rayez M-T, Rayez J-C and Robbe J-M 1998 Ab initio study of the potential energy surfaces for the reaction C + CH → C2 + H J. Phys. Chem. A 102 2009

    CAS  Google Scholar 

  47. Martin M 1992 C2 spectroscopy and kinetics J. Photochem. Photobiol. A Chem. 66 263

    CAS  Google Scholar 

  48. Van Orden A and Saykally R J 1998 Small carbon clusters:  Spectroscopy, structure, and energetics Chem. Rev. 98 2313

    Google Scholar 

  49. Boggio-Pasqua M, Voronin A I, Halvick P and Rayez J-C 2000 Analytical representations of high level ab initio potential energy curves of the C2 molecule J. Mol. Struct. THEOCHEM 531 159

    CAS  Google Scholar 

  50. Weltner Jr W and Van Zee R J 1989 Carbon molecules, ions, and clusters Chem. Rev. 89 1713

    CAS  Google Scholar 

  51. Douay M, Nietmann R and Bernath P F 1988 The discovery of two new infrared electronic transitions of C2: B1Δg-A1Πu and B′ 1Σg + -A1Πu J. Mol. Spectrosc. 131 261

    CAS  Google Scholar 

  52. Douay M, Nietmann R and Bernath P F 1988 New observations of the A1Πu-X1Σg + transition (Phillips system) of C2 J. Mol. Spectrosc. 131 250

    CAS  Google Scholar 

  53. Pradhan A D, Partridge H and Bauschlicher C W 1994 The dissociation energy of CN and C2 J. Chem. Phys. 101 3857

    CAS  Google Scholar 

  54. Mulliken R S 1939 Note on electronic states of diatomic carbon, and the carbon-carbon bond Phys. Rev. 56 778

    CAS  Google Scholar 

  55. Su P, Wu J, Gu J, Wu W, Shaik S and Hiberty P C 2011 Bonding conundrums in the C2 molecule: A valence bond study J. Chem. Theory Comput. 7 121

    CAS  PubMed  Google Scholar 

  56. Shaik S, Danovich D, Wu W, Su P, Rzepa H S and Hiberty P C 2012 Quadruple bonding in C 2 and analogous eight-valence electron species Nat. Chem. 4 195

    CAS  Google Scholar 

  57. von RaguéSchleyer P, Maslak P, Chandrasekhar J and Grev R S 1993 Is a CC quadruple bond possible? Tetrahedron Lett. 34 6387

    Google Scholar 

  58. Lofthus A and Krupenie P H 1977 The spectrum of molecular nitrogen J. Phys. Chem. Ref. Data 6 113

    CAS  Google Scholar 

  59. Huber K-P 2013 Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Location: Springer Science & Business Media)

    Google Scholar 

  60. Krupenie P H 1972 The spectrum of molecular oxygen J. Phys. Chem. Ref. Data 1 423

    CAS  Google Scholar 

  61. Matsunaga F M and Watanabe K 1967 Total and photoionization coefficients and dissociation continua of O2 in the 580–1070 Å region Sci. Light 16 31

    CAS  Google Scholar 

  62. Gale H G and Monk G S 1924 The spectrum of fluorine Astrophys. J. 59 125

    CAS  Google Scholar 

  63. Gale H G and Monk G S 1929 The band spectrum of fluorine Astrophys. J. 69 77

    CAS  Google Scholar 

  64. Andrychuk D 1951 The Raman spectrum of fluorine Can. J. Phys. 29 151

    CAS  Google Scholar 

  65. Tanaka Y and Yoshino K 1972 Absorption spectra of Ne2 and HeNe molecules in the vacuum‐uv region J. Chem. Phys. 57 2964

    CAS  Google Scholar 

  66. Pauling L 1960 The Nature of the Chemical Bond (Ithaca, NY: Cornell University Press)

    Google Scholar 

  67. Bader R F W, Keaveny I and Cade P E 1967 Molecular charge distributions and chemical binding. II. First‐row diatomic hydrides, AH J. Chem. Phys. 47 3381

  68. Bader R F W 1990 Atoms in Molecules: A Quantum Theory (New York: Oxford University Press)

    Google Scholar 

  69. Popelier P L A, Aicken F M and O’Brien S E 2000 Atoms in molecules Chem. Model. Appl. Theory 1 143

    CAS  Google Scholar 

  70. Amezaga N J M, Pamies S C, Peruchena N M and Sosa G L 2009 Halogen bonding: A study based on the electronic charge density J. Phys. Chem. A 114 552

    Google Scholar 

  71. Cremer D and Kraka E 1984 Chemical bonds without bonding electron density—Does the difference electron‐density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. Eng. 23 627

    Google Scholar 

  72. Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J and Yang W 2010 Revealing noncovalent interactions J. Am. Chem. Soc. 132 6498

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Contreras-García J, Yang W and Johnson E R 2011 Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions J. Phys. Chem. A 115 12983

    PubMed  Google Scholar 

  74. Contreras-García J, Johnson E R, Keinan S, Chaudret R, Piquemal J-P, Beratan D N and Yang W 2011 NCIPLOT: A program for plotting noncovalent interaction regions J. Chem. Theory Comput. 7 625

    PubMed  PubMed Central  Google Scholar 

  75. Zhao D-X and Yang Z-Z 2014 Theoretical exploration of the potential and force acting on one electron within a molecule J. Phys. Chem. A 118 9045

    CAS  PubMed  Google Scholar 

  76. Zhao D and Yang Z 2014 Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM‐MO diagram J. Comput. Chem. 35 965

    CAS  PubMed  Google Scholar 

  77. Zhao D, Gong L and Yang Z 2002 Exploration of the potential acting on an electron within diatomic molecules Chin. Sci. Bull. 47 635

    Google Scholar 

  78. Bartashevich E and Tsirelson V 2018 A comparative view on the potential acting on an electron in a molecule and the electrostatic potential through the typical halogen bonds J. Comput. Chem. 39 573

    CAS  PubMed  Google Scholar 

  79. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B and Petersson G A 2009 Gaussian 09 Revision D. 01, 2009 (Wallingford CT: Gaussian Inc.)

  80. Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Györffy W, Kats D, Korona T and Lindh R 2015 MOLPRO, Version 2015.1, a Package of Ab Initio Programs (Cardiff, Wales, UK: Univ. Cardiff Chem. Consult.)

  81. Keith T A 2014 AIMAll (Version 14.11.23), TK Gristmill Software, Overland Park KS, USA

  82. Glendening E D, Landis C R and Weinhold F 2013 NBO 6.0: Natural bond orbital analysis program J. Comput. Chem. 34 1429

    CAS  PubMed  Google Scholar 

  83. Glendening E D and Weinhold F 1998 Natural resonance theory: I. General formalism J. Comput. Chem. 19 593

    CAS  Google Scholar 

  84. Lu T and Chen F 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comput. Chem. 33 580

    Google Scholar 

  85. Bacskay G B and Nordholm S 2017 Covalent bonding in the hydrogen molecule J. Phys. Chem. A 121 9330

    CAS  PubMed  Google Scholar 

  86. Aziz R A and Slaman M J 1989 The Ne-Ne interatomic potential revisited Chem. Phys. 130 187

    CAS  Google Scholar 

  87. Emsley J 1998 The Elements (Oxford; New York: Clarendon Press; Oxford University Press)

  88. Heaven M C, Bondybey V E, Merritt J M and Kaledin A L 2011 The unique bonding characteristics of beryllium and the Group IIA metals Chem. Phys. Lett. 506 1

    CAS  Google Scholar 

  89. Luo Y-R 2003 Handbook of Bond dissociation energies In Organic Compounds (Boca Raton: CRC Press) p. 89

  90. Sudhakar P V and Lammertsma K 1993 Bond properties of Be3–7 clusters J. Chem. Phys. 99 7929

    CAS  Google Scholar 

  91. Cao W L, Gatti C, MacDougall P J and Bader R F W 1987 On the presence of non-nuclear attractors in the charge distributions of Li and Na clusters Chem. Phys. Lett. 141 380

    CAS  Google Scholar 

  92. Vries R Y de, Briels W J, Fell D, Velde G te and Baerends E J 1996 Charge density study with the Maximum Entropy Method on model data of silicon. A search for non-nuclear attractors Can. J. Chem. 74 1054

    Google Scholar 

  93. Iversen B B, Larsen F K, Souhassou M and Takata M 1995 Experimental evidence for the existence of non-nuclear maxima in the electron‐density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method Acta Crystallogr. Sect. B 51 580

    Google Scholar 

  94. Platts J A, Overgaard J, Jones C, Iversen B B and Stasch A 2010 First experimental characterization of a non-nuclear attractor in a dimeric magnesium (I) compound J. Phys. Chem. A 115 194

    PubMed  Google Scholar 

  95. Brea O and Corral I 2018 Super strong Be–Be bonds: Theoretical insight into the electronic structure of Be–Be complexes with radical ligands J. Phys. Chem. A 122 2258

    CAS  PubMed  Google Scholar 

  96. Mó O, Yáñez M, Eckert-Maksić M, Maksić Z B, Alkorta I and Elguero J 2005 Periodic trends in bond dissociation energies. A theoretical study J. Phys. Chem. A 109 4359

    PubMed  Google Scholar 

Download references

Acknowledgements

Computational facilities at the Department of Inorganic and Physical Chemistry maintained by Prof. Sai G. Ramesh is acknowledged. AD acknowledges the Indian Institute of Science for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Arunan.

Additional information

Special Issue on 150 years of the Periodic Table

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1167 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, A., Arunan, E. Chemical bonding in Period 2 homonuclear diatomic molecules: a comprehensive relook. J Chem Sci 131, 120 (2019). https://doi.org/10.1007/s12039-019-1707-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1707-5

Keywords

  • Covalency
  • Iconicity
  • van der Waals interaction
  • Atoms in molecules
  • electrostatic potential