Skip to main content
Log in

DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Density functional theory calculations at M052X/6-311++G** level were performed to understand the structure and stability of Ni(II) tetraaza macrocyclic dicarbinolamine complex 1. The preferential stability of 1 over the hitherto unknown Ni(II) complex having fully conjugated macrocyclic ligand 2, is examined by analyzing geometric and electronic structures and energy considerations. The present calculations predict that in the trans (C2) structure, 1 is 102 kcal/mol more stable than its components 2 and 2(OH) at M062X-D3/def2-QZVP//M052X/6-311++G** level. This significant stabilization explains the formation of 1 as experimentally observed. The calculations support a distorted square planar environment for Ni in 1, in agreement with the observed spectral and magnetic properties. In order to understand the stability of 1, we examined the second-order stabilizing interactions in natural bond orbital (NBO) basis, the role of the noncovalent dispersion energy, macrocyclic cavity size, Ni-ligand covalent bond strength, natural electronic population on the atomic centers and the nature of the frontier molecular orbitals in the complexes. The present study reveals that the higher stability of 1 over 2 is primarily due to the stronger covalent bonds between the Ni(II) centre, and two of the coordinating nitrogen atoms in 1 than in 2 and significant second-order stabilizing interactions originating from the NBOs involving the oxygen atoms.

Graphic abstract

Density functional theory calculations at M052X/6-311++G** level explains the structure and stability of Ni(II) tetraaza macrocyclic dicarbinolamine complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Huang X and Groves J T 2018 Oxygen activation and radical transformations in heme proteins and metalloporphyrins Chem. Rev. 118 2491

    CAS  PubMed  Google Scholar 

  2. Guo M, Corona T, Ray K and Nam W 2019 Synthesis of new tren-based heme and nonheme high-valent iron and manganese oxo cores in biological and abiological oxidation reactions ACS Cent. Sci. 5 13

    CAS  PubMed  Google Scholar 

  3. Telser J, Horng Y C, Becker D F, Hoffman B M and Ragsdale S W 2000 On the assignment of nickel oxidation states of the Ox1 and Ox2 forms of methyl-coenzyme M Reductase J. Am. Chem. Soc. 122 182

    CAS  Google Scholar 

  4. Solomon E I, Brunold T C, Davis M I, Kemsley J N, Lee S-K, Lehnert N, Neese F, Skulan A J, Yang Y-S and Zhou J 2000 Geometric and electronic structure/function correlations in non-heme iron enzymes Chem. Rev. 100 235

    CAS  PubMed  Google Scholar 

  5. Solomon E I, Light K M, Liu L V, Srnec M and Wong S D 2013 Geometric and electronic structure contributions to function in non-heme iron enzymes Acc. Chem. Res. 46 2725

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hohenberger J, Ray K and Meyer K 2012 The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes Nat. Commun. 3 720

    PubMed  Google Scholar 

  7. Cook S A and Borovik A S 2015 Molecular designs for controlling the local environments around metal ions Acc. Chem. Res. 48 2407

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaik S, Kumar D, de Visser S P, Altun A and Thiel W 2005 Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes Chem. Rev. 105 2279

    CAS  PubMed  Google Scholar 

  9. Goldberg D P 2007 Corrolazines: New frontiers in high-valent metalloporphyrinoid stability and reactivity Acc. Chem. Res. 40 626

    CAS  PubMed  Google Scholar 

  10. Liang X and Sadler P 2004 Cyclam complexes and their applications in medicine Chem. Soc. Rev. 33 246

    CAS  PubMed  Google Scholar 

  11. Wainwright K P 1997 Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen Coord. Chem. Rev. 166 35

    CAS  Google Scholar 

  12. Antunes P, Campello P M, Delgado R, Drew M G B, Felix V and Santos I 2003 Metal complexes of a tetraazacyclophane: Solution and molecular modelling studies Dalton Trans. 1852

  13. Shircliff A D, Wilson K R, Cannon D J, Jones D G, Zhang Z, Chen Z, Yin G, Prior T J and Hubin T J 2015 Synthesis structural studies and oxidation catalysis of the manganese(II) iron(II) and copper(II) complexes of a 2-pyridylmethyl pendant armed side-bridged cyclam Inorg. Chem. Comm. 59 71

    CAS  Google Scholar 

  14. Ranganathan R S, Raju N, Fan H, Zhang X, Tweedle M F, Desreux J F and Jacques V 2002 Polymethylated DOTA Ligands. 2. Synthesis of rigidified lanthanide chelates and studies on the effect of alkyl substitution on conformational mobility and relaxivity Inorg. Chem. 41 6856

    CAS  PubMed  Google Scholar 

  15. Serres R G, Grapperhaus C A, Bothe E, Bill E, Weyhermüller T, Neese F and Wieghardt K 2004 Structural spectroscopic and computational study of an octahedral non-heme{Fe-NO}6–8 series: [Fe(NO)(cyclam-ac)]2+/+/0 J. Am. Chem. Soc. 126 5138

    CAS  PubMed  Google Scholar 

  16. Lauffer R B 1987 Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design Chem. Rev. 87 901

    CAS  Google Scholar 

  17. Tweedle M F 1989 In Lanthanide probes in life, chemical and earth sciences: Theory and practice J-C G Bünzli and G R Choppin (Eds.) (New York: Elsevier) p. 127

  18. Wang X, Jaraquemada-Peláez M G, Rodríguez-Rodríguez C, Cao Y, Buchwalder C, Choudhary N, Jermilova U, Ramogida C F, Saatchi K, Häfeli U O, Patrick B O and Orvig C 2018 H4octox: Versatile bimodal octadentate acyclic chelating ligand for medicinal inorganic chemistry J. Am. Chem. Soc. 140 15487

    CAS  PubMed  Google Scholar 

  19. Fur M L, Beyler M, Lepareur N, Fougère O, Platas-Iglesias C, Rousseaux O and Tripier R 2016 Pyclen tri-n-butylphosphonate ester as potential chelator for targeted radiotherapy: From yttrium(III) complexation to 90Y radiolabeling Inorg. Chem. 55 8003

    PubMed  Google Scholar 

  20. Ibrahim R, Tsuchiya S and Ogawa S 2000 A color-switching molecule: Specific properties of new tetraaza macrocycle zinc complex with a facile hydrogen atom J. Am. Chem. Soc. 122 12174

    CAS  Google Scholar 

  21. Francke R, Schille B and Roemelt M 2018 Homogeneously catalyzed electroreduction of carbon dioxide—methods mechanisms and catalysts Chem. Rev. 118 9 4631

    CAS  PubMed  Google Scholar 

  22. Félix V, Costa J, Delgado R, Drew M G. B. Duarte M T, Resende C 2001 X-Ray diffraction and molecular mechanics studies of 12- 13- and 14-membered tetraaza macrocycles containing pyridine: effect of the macrocyclic cavity size on the selectivity of the metal ion J. Chem. Soc. Dalton Trans. 1462

  23. Leugger A P, Hertli L and Kaden T A 1978 Metal complexes with macrocyclic ligands. XI. Ring size effect on the complexation rates with transition metal ions Helv. Chim. Acta 61 2296

    CAS  Google Scholar 

  24. Comba P and Schiek W 2003 Fit and misfit between ligands and metal ions Coord. Chem. Rev. 21 238

    Google Scholar 

  25. Comba P, Lampeka Y D, Nazarenko A Y, Prikhod’ko A I, Pritzkow H and Taraszewska J 2002 Cooperative effects in the binding of substrates to bis-macrocyclic ligand nickel(II) and nickel(III) complexes Eur. J. Inorg. Chem. 1871

    Google Scholar 

  26. Barefield E K, Bianchi A, Billo E J, Connolly P J, Paoletti P, Summers J S and Van Derveer D G 1986 Thermodynamic and structural studies of configurational isomers of [Ni(cyclam)]2+ Inorg. Chem. 25 4197

    CAS  Google Scholar 

  27. Kent B E 2010 Coordination chemistry of N-tetraalkylated cyclam ligands - A status report Coord. Chem. Rev254 1607

    Google Scholar 

  28. Mochizuki K and Kondo T 1995 Isolation and Vis-absorption spectrum of trans-[Ni(OH2)2(cyclam)]Cl2.4H2O Inorg. Chem. 34 6241

    CAS  Google Scholar 

  29. Choi K Y, Kim Y J, Ryu H and Suh I H 1999 Synthesis and characterization of nickel(II) complexes of a tetraaza macrocycle containing axial ligands Inorg. Chem. Commun. 2 176

    CAS  Google Scholar 

  30. Zeigerson E, Bar I, Bernstein J, Kirschenbaum L J and Meyerstein D 1982 Stabilization of the tervalent nickel complex with meso-5 7 7 12 14 14-hexamethyl-1 4 8 11-tetraazacyclotetradecane by axial coordination of anions in aqueous solution Inorg. Chem. 21 73

    CAS  Google Scholar 

  31. Bosnich B, Poon C K and Tobe M L 1965 Complexes of cobalt(III) with a cyclic tetradentate secondary amine Inorg. Chem. 4 1102

    CAS  Google Scholar 

  32. Meyer K, Bendix J, Bill E, Weyhermüller T and Wieghardt K 1998 Molecular and electronic structure of nitridochromium(V) complexes with macrocyclic amine ligands Inorg. Chem. 37 5180

    CAS  Google Scholar 

  33. Anuradha S, Malar E J P and Vijayaraghavan V R 2015 Kinetic measurements and quantum chemical calculations on low spin Ni(II)/(III) macrocyclic complexes in aqueous and sulphato medium J. Chem. Sci. 127 1287

    Google Scholar 

  34. Sankaran A, Malar E J P and Vijayaraghavan V R 2017 Study of behaviour of Ni(III) macrocyclic complexes in acidic aqueous medium through kinetic measurement involving hydrogen peroxide oxidation and DFT calculations J. Chem. Sci. 129 193

    CAS  Google Scholar 

  35. Barefield E K, Wagnor F and Hodges K D 1976 Synthesis of macrocyclic tetramines by metal ion assisted cyclization reactions Inorg. Chem. 15 1370

    CAS  Google Scholar 

  36. Busch D H and Bailar J C Jr 1956 The iron(II)-methine chromophore J. Am. Chem. Soc. 78 1137

    CAS  Google Scholar 

  37. Eggleston D S and Jackels S C 1980 Tetrasubstituted [14]-l3810-tetraenen4 macrocyclic complexes: Synthesis organic precursor and template reaction mechanism Inorg. Chem. 19 1593

    CAS  Google Scholar 

  38. Haque Z P, McPartlin M and Tasker P A 1979 Macrocyclic ligand synthesis. Isolation of a dicarbinolamine complex from zinc(II)-promoted cyclization reaction Inorg. Chem. 18 2920

    CAS  Google Scholar 

  39. Balasubramanian S 1987 Macrocyclic dicarbinolamine complexes of nickel(II) with planar N4(N2) ligands: Synthesis and spectral and electrochemical properties Inorg. Chem. 26 553

    CAS  Google Scholar 

  40. Sprung M A 1940 A Summary of the reactions of aldehydes with amines Chem. Rev. 26 297

    CAS  Google Scholar 

  41. Jencke W P 1969 Catalysis in chemistry and enzymology (New York: McGraw Hill)

    Google Scholar 

  42. Parr R G and Yang W 1989 Density functional theory of atoms and molecules (New York: Oxford University)

    Google Scholar 

  43. Becke A D 1988 Density-functional exchange energy approximation with correct asymptotic behaviour Phys. Rev. A 38 3098

    CAS  Google Scholar 

  44. Perdew J P 1986 Density functional approximation for the correlation energy of the inhomogeneous electron gas Phys. Rev. B 33 8822

    CAS  Google Scholar 

  45. Schweinfurth D, Krzystek J, Schapiro I, Demeshko S, Klein J, Telser J, Ozarowski A, Su C Y, Meyer F, Atanasov M, Neese F and Sarkar B 2013 Electronic structures of octahedral Ni(II) complexes with “click” derived triazole ligands: a combined structural magnetometric spectroscopic and theoretical study Inorg. Chem. 52 6880

    CAS  PubMed  Google Scholar 

  46. Petrenko T, Ray K, Wieghardt K and Neese F 2006 Vibrational markers for the open-shell character of transition metal bis-dithiolenes: an infrared resonance Raman and quantum chemical study J. Am. Chem. Soc. 128 4422

    CAS  PubMed  Google Scholar 

  47. Pollock C J, Delgado-Jaime M U, Atanasov M, Neese F and DeBeer S 2014 Kβ mainline X-ray emission spectroscopy as an experimental probe of metal–ligand covalency J. Am. Chem. Soc. 136 9453

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fritsch N, Wick C R, Waidmann T, Dral P O and Tucher J 2014 Multiply bonded metal(II) acetate (rhodium ruthenium and molybdenum) complexes with the trans-12-bis(N-methylimidazol-2yl)ethylene ligand Inorg. Chem. 53 12305

    CAS  PubMed  Google Scholar 

  49. London F 1937 The general theory of molecular forces Trans. Faraday Soc. 33 8b

    Google Scholar 

  50. Liptrot D J and Power P P 2017 London dispersion forces in sterically crowded inorganic and organometallic molecules Nature Rev. Chem. 1 0004

    Google Scholar 

  51. Wagner J P and Schreiner P R 2015 London dispersion in molecular chemistry -reconsidering steric effects Angew. Chem. Int. Ed. 54 12274

    CAS  Google Scholar 

  52. Wagner J P and Schreiner P R 2016 London dispersion decisively contributes to the thermodynamic stability of bulky NHC-coordinated main group compounds J. Chem. Theor. Comput. 12 231

    CAS  Google Scholar 

  53. Zhao Y, Schultz N E and Truhlar D G 2006 Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry thermochemical kinetics and noncovalent interactions J. Chem. Theor. Comput. 2 364

    Google Scholar 

  54. Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry thermochemical kinetics noncovalent interactions excited states and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215

    CAS  Google Scholar 

  55. Grimme S 2011 Density functional theory with London dispersion corrections WIREs Comput. Mol. Sci. 1 211

    CAS  Google Scholar 

  56. Goerigk L, Grimme S 2011 A thorough benchmark of density functional methods for general main group thermochemistry kinetics and noncovalent interactions Phys. Chem. Chem. Phys. 13 6670

    CAS  PubMed  Google Scholar 

  57. Rezac J and Hobza P 2016 Benchmark calculations of interaction energies in noncovalent complexes and their applications Chem. Rev. 116 5038

    CAS  PubMed  Google Scholar 

  58. Malar E J P and Divya P 2018 Structural stability in dimer and tetramer clusters of l-alanine in the gas-phase and the feasibility of peptide bond formation J. Phys. Chem. B 122 6462

    CAS  PubMed  Google Scholar 

  59. Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648

    CAS  Google Scholar 

  60. Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    CAS  Google Scholar 

  61. Mayer I 1983 Charge bond order and valence in the ab initio SCF theory Chem. Phys. Lett. 97 270

    CAS  Google Scholar 

  62. Mayer I 1984 Bond order and valence: Relations to Mulliken’s population analysis Int. J. Quant. Chem. 26 151

    CAS  Google Scholar 

  63. Mayer I 1985 Bond orders and valences in the SCF theory: A comment Theor. Chim. Acta 67 315

    CAS  Google Scholar 

  64. Frisch M J et al. 2004 GAUSSIAN 03 Revision E.01 (Wallingford CT: Gaussian Inc.)

    Google Scholar 

  65. Neese F 2003 An improvement of the resolution of the identity approximation for the formation of the coulomb matrix J. Comp. Chem. 24 1740

    CAS  Google Scholar 

  66. Weigend F and Ahlrichs R 2005 Balanced basis sets of split valence triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 7 3297

    CAS  PubMed  Google Scholar 

  67. Weigend F 2006 Accurate coulomb-fitting basis sets for H to Rn Phys. Chem. Chem. Phys. 8 1057

    CAS  PubMed  Google Scholar 

  68. Neese F 2012 The ORCA program system Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 73

    CAS  Google Scholar 

  69. Neese F 2018 Software update: The ORCA program system Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8 e1327

    Google Scholar 

  70. Foster J P and Weinhold F J 1980 Natural hybrid orbitals J. Am. Chem. Soc. 102 7211

    CAS  Google Scholar 

  71. Glendening E D, Reed A E, Carpenter J E and Weinhold F 1990 NBO Version 3.1 (Wisconsin: University of Wisconsin)

    Google Scholar 

  72. Malar E J P 2003 Do penta- and decaphospha analogues of lithocene anion and beryllocene exist? Analysis of stability structure and bonding by hybrid density functional study Inorg. Chem. 42 3873

    CAS  PubMed  Google Scholar 

  73. Malar E J P 2004 Can the cyclo-P5 ligand introduce basicity at the transition metal center in metallocenes? A hybrid density functional study on the cyclo-P5 analogues of metallocenes of Fe, Ru and Os Eur. J. Inorg. Chem. 2723

  74. Malar E J P 2005 Density functional theory analysis of some triple-decker sandwich complexes of iron containing cyclo-P5 and cyclo-As5 ligands Theor. Chem. Acc. 114 213

    CAS  Google Scholar 

  75. Indubala E, Dhanasekar M, Sudha V, Malar E J P, Divya P, Sherine J, Rajagopal R, Bhat S V and Harinipriya S 2018 L-Alanine capping of ZnO nanorods: Increased carrier concentration in ZnO/ CuI heterojunction diode RSC Adv. 8 5350

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E J Padma Malar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malar, E.J.P., Jacob, R. & Balasubramanian, S. DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety. J Chem Sci 131, 110 (2019). https://doi.org/10.1007/s12039-019-1688-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1688-4

Keywords

Navigation