Skip to main content

Advertisement

Log in

Hydrogen storage properties of Ti2FeV BCC solid solution

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This paper deals with hydrogen storage properties of Ti-V based BCC solid solution incorporated with Fe. The alloy with composition Ti2FeV was prepared by arc melting method. X-ray diffraction (XRD) and energy dispersive X-ray analysis studies confirmed formation of solid solution phase with uniform composition and BCC structure. SEM studies revealed the formation of irregular shaped particles with size in the range of few microns up on hydrogenation of the parent alloy. The alloy shows maximum hydrogen storage capacity of 3.41 wt.% at 20 bar and 303 K and the thermodynamic parameters established near room temperature suitability of the alloy for solid state hydrogen storage applications. Hydrogenation kinetics is found to be quite fast and detailed kinetic analysis were done to underscore the hydrogenation mechanism. Activation energy during the initial stage of hydrogenation is found to be 30.8 kJ/mol. The value decreases to 14.4 kJ/mol for extended duration of hydrogenation, and this is explained based on difference in rate determining steps existing at different time scales.

Graphic abstract

Extent of hydrogen absorption as a function of temperature and time for Ti2FeV alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jain I P 2009 Hydrogen the fuel for 21st century Int. J. Hydrog. Energy 34 7368

    Article  CAS  Google Scholar 

  2. Reardon H, Hanlon J M, Hughes R W, Godula-Jopek A, Mandal T K and Gregory D H 2012 Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design Energy Environ. Sci. 5 5951

    Article  CAS  Google Scholar 

  3. Zhao X Y, Ma L Q, Yao Y, Ding Y and Shen X D 2010 Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries Energy Environ. Sci. 3 1316

    Article  CAS  Google Scholar 

  4. Banerjee S, Kumar A and Pillai C G S 2014 Improvement on the hydrogen storage properties of ZrFe2 Laves phase alloy by vanadium substitution Intermetallics 51 30

  5. Hardian R, Pistidda C, Chaudhary A –L, Capurso G, Gizer G, Cao H, Milanese C, Girella A, Santoru A, Yigit D, Dieringa H, Kainer K U, Klassen T and Dornheim M 2018 Waste Mg-Al based alloys for hydrogen storage Int. J. Hydrog. Energy 43 16738

    Article  CAS  Google Scholar 

  6. Young K, Nei J, Huang B and Fetcenko M A 2011 Studies of off-stoichiometric AB2 metal hydride alloy: Part 2. Hydrogen storage and electrochemical properties Int. J. Hydrog. Energy 36 11146

    Article  CAS  Google Scholar 

  7. Rogulski Z, Dłubak J, Karwowska M, Krebs M, Pytlik E, Schmalz M, Gumkowska A and Czerwińskia A 2010 Studies on metal hydride electrodes containing no binder additives J. Power Sources 195 7517

    Article  CAS  Google Scholar 

  8. Okada M, Kuriiwa T, Tamura T, Takamura H and Kamegawa A 2002 Ti–V–Cr b.c.c. alloys with high protium content J. Alloys Compd. 330–332 511

    Article  CAS  Google Scholar 

  9. Seo C-Y, Kim J-H, Lee P S and Lee J-Y 2003 Hydrogen storage properties of vanadium-based b.c.c. solid solution metal hydride J. Alloys Compd. 348 252

    Article  CAS  Google Scholar 

  10. Liu X P, Cuevas F, Jiang L J, Latroche M, Li Z N and Wang S M 2009 Improvement of the hydrogen storage properties of Ti-Cr-V-Fe BCC alloy by Ce addition J. Alloys Compd. 476 403

    Article  CAS  Google Scholar 

  11. Basak S, Shashikala K, Sengupta P and Kulshreshtha S K 2007 Hydrogen absorption properties of Ti–V–Fe alloys: effect of Cr substitution Int. J. Hydrog. Energy 32 4973

    Article  CAS  Google Scholar 

  12. Iba H and Akiba E 1997 Hydrogen absorption and modulated structure in Ti-V-Mn alloys J. Alloys Compd. 253-254 21

    CAS  Google Scholar 

  13. Kumar A, Shashikala K, Banerjee S, Nuwad J, Das P and Pillai C G S 2012 Effect of cycling on hydrogen storage properties of Ti2CrV alloy Int. J. Hydrog. Energy 37 3677

    Article  CAS  Google Scholar 

  14. Santos S F and Huot J 2009 Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions J. Alloys Compd. 472 247

  15. Ruz P, Kumar A, Banerjee S, Meena S S and Pillai C G S 2014 Hydrogen absorption-characteristics and Mössbauer spectroscopic study of Ti0.67Nb0.33-xFex (x = 0.00, 0.13, 0.20) alloys J. Alloys Compd. 585 120

  16. Ruz P, Banerjee S, Halder R, Kumar A and Sudarsan V 2017 Thermodynamic, Kinetic and microstructural evolution of Ti0.43Zr0.07Cr0.25V0.25 alloy upon hydrogenation Int. J. Hydrog. Energy 42 11482

  17. Qian L, Chou K-C, Lin Q, Jiang L-J and Zhan F 2004 Hydrogen absorption and desorption kinetics of Ag–Mg–Ni alloys Int. J. Hydrogen Energy 29 843

    Article  Google Scholar 

  18. Khawam A and Flanagan D R 2006 Solid-state kinetic models:  basics and mathematical fundamentals J. Phys. Chem. B 110 17315

    Article  CAS  Google Scholar 

  19. Ruz P and Sudarsan V 2015 An investigation of hydriding performance of Zr2-xTixNi (x = 0.0, 0.3, 0.7, 1.0) alloys J. Alloys Compd. 627 123

  20. Ginstling A M and Brounshtein B I 1950 On diffusion kinetics in chemical reactions taking place in spherical powder grains Zh. Prikl. Khim. 23 1249

    Google Scholar 

  21. Carter R E 1961 Kinetic model for solid-state reactions J. Chem. Phys. 34 2010

    Article  CAS  Google Scholar 

  22. Brown P W 1989 Effects of particle size distribution on the kinetics of hydration of tricalcium silicate J. Am. Ceram. Soc. 72 1829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seemita Banerjee or V Sudarsan.

Additional information

Special Issue on Materials Chemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T.K., Kumar, A., Ruz, P. et al. Hydrogen storage properties of Ti2FeV BCC solid solution. J Chem Sci 131, 98 (2019). https://doi.org/10.1007/s12039-019-1674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1674-x

Keywords

Navigation