One-pot synthesis of new water-soluble binuclear octahedral Ni(II) and mononuclear Ru(II) carbonyl complexes containing 2,6 pyridine dicarboxylic acid

  • P KalaivaniEmail author
  • H Puschmann
  • M V Kaveri
  • T Suresh
  • R PrabhakaranEmail author
Regular Article


An attempt to synthesize mixed geometrical hetero binuclear complexes has been made by reacting 2,6 pyridinedicarboxylic acid with [NiCl2(PPh3)2] and [RuHCl(CO)(PPh3)3]. However, the reaction afforded a mononuclear complex [Ru(dipic)(CO)(PPh3)2].DMF (1) and homo binuclear complex [Ni2(dipic)2(H2O)5].2H2O (2) [dipic = 2,6-pyridinedicarboxylate] respectively. The new complexes (1 and 2) were characterized by elemental analyses, IR, UV-Vis, 1H-NMR and single-crystal X-ray diffraction studies. The complexes 1 and 2 crystallized in the monoclinic P21/c and triclinic P-1 space groups, respectively. Complex 2 displayed a three-dimensional (3D) network with lattice water molecules. The redox behaviour of the complexes was studied by cyclic voltammetry. The DNA and albumin binding studies of the complexes were done by taking CT-DNA and BSA as models. The new complexes exhibited significant binding efficiency with DNA and albumin.

Graphic abstract

A reaction of 2,6 pyridinedicarboxylic acid with [NiCl2(PPh3)2] and [RuHCl(CO)(PPh3)3] resulted in two structurally different complexes [Ru(dipic)(CO)(PPh3)2].DMF (1) and [Ni2(dipic)2(H2O)5].2H2O (2).


Ruthenium(II) complex binuclear Ni(II) complex pyridine dicarboxylic acid NMR X-ray crystallography cyclic voltammetry CT-DNA BSA 



The author P. K. gratefully acknowledges Department of Science and Technology (DST-SERB), New Delhi, India (No. SB/FT/CS-056-/2014 dated 12.08.2015) for the financial support.

Supplementary material

12039_2019_1661_MOESM1_ESM.pdf (545 kb)
Supplementary material 1 (PDF 544 kb)


  1. 1.
    (a) K D Karlin and Z Tylekar Z (Eds.) 1993 Bioinorganic Chemistry of Copper (New York: Chapman & Hall) p. 213; (b) Que L and True A E 1990 Dinuclear Iron- and Manganese-Oxo Sites in Biology Prog. Inorg. Chem. 38 97; (c) Solomon E I, Baldwin M J and Lowery M D 1992 Electronic absorption spectroscopy of proteins: contributions to reactivity Chem. Rev. 92 521Google Scholar
  2. 2.
    Barynin V V, Vagin A A, Melik-Adamyan V R, Grebenko A I, Khangulov S V, Popov A N, Andrionova M E and Vainshtein B K 1986 Metal ions in biological systems Dokl. Akad. Nauk. SSSR 288 887Google Scholar
  3. 3.
    Jabri E, Carr M B, Hausinger R P and Karplus P A 1995 The crystal structure of urease from Klebsiellaaerogenes Science 268 998CrossRefGoogle Scholar
  4. 4.
    Kim E E and Wyckoff H W 1991 Reaction mechanism of alkaline phosphatase based on crystal structures: Two-metal ion catalysis J. Mol. Biol. 218 449CrossRefGoogle Scholar
  5. 5.
    (a) Tainer J A, Getzoff E D, Beem K M, Richardson, J S and Richardson D C 1982 Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase J. Mol. Biol. 160 181; (b) Tainer J A, Getzoff E D, Richardson J S and Richardson D C 1983 Structure and mechanism of copper, zinc superoxide dismutase Nature 306 284Google Scholar
  6. 6.
    Strater N, Klabunde T, Tucker P, Witzel V and Krebs B 1995 Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site Science 268 1489Google Scholar
  7. 7.
    Egloff M P, Cohen P T, Reinemer P and Barford D 1995 Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate J. Mol. Biol. 254 942CrossRefGoogle Scholar
  8. 8.
    Belle C and Pierre J L 2003 Asymmetry in Bridged Binuclear Metalloenzymes: Lessons for the Chemist Eur. J. Inorg. Chem. 4137CrossRefGoogle Scholar
  9. 9.
    Goldstein M, Barton J K, Goldberg J M, Kumar C V and Turro N J 1986 Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereo selectivity J. Am. Chem. Soc. 108 2081CrossRefGoogle Scholar
  10. 10.
    Delaney S, Pascaly M, Bhattacharya P K, Han K and Barton J K 2002 Oxidative damage by ruthenium complexes containing the dipyridophenazine ligand or its derivatives: a focus on intercalation Inorg. Chem. 41 1966Google Scholar
  11. 11.
    Grossel M C, Golden C A, Gomm J R, Horton P N, Merckel D A S, Oszer M E and Parker R A 2001 Solid-state behaviour of pyridine-2,6-dicarboxylate esters: supramolecular assembly into infinite tapes CrystEngComm 3 170CrossRefGoogle Scholar
  12. 12.
    Ducommun Y, Helm L, Laurenezy G and Merbach A 1989 Variable pressure spectrophotometric equilibrium and 139La NMR kinetic studies of lanthanum(III) ion complex formation with 2,6-dicarboxy-4-hydroxypyridine in aqueous solution Inorg. Chim. Acta 158 3CrossRefGoogle Scholar
  13. 13.
    Norkus E and Stalnioniene I 2002 Cu(II), Pb(II) and Cd(II) complex formation with pyridine-2,6-dicarboxylate and 4-hydroxypyridine-2,6-dicarboxylate in aqueous solutions Chemija (Vilnius) 13 194Google Scholar
  14. 14.
    Çolak AT, Çolak F, Yesilel O Z and Büyükgüngör O 2009 Synthesis, spectroscopic, thermal, voltammetric studies and biological activity of crystalline complexes of pyridine-2,6-dicarboxylic acid and 8-hydroxyquinoline J. Mol. Struct. 936 67CrossRefGoogle Scholar
  15. 15.
    Kirillova M V, Guedes da Silva M F C, Kirillov A M, Frausto da Silva J J R, Pombeiro A J L 2007 3D hydrogen bonded heteronuclear Co(II), Ni(II), Cu(II) and Zn(II) aqua complexes derived from dipicolinic acid Inorg. Chim. Acta 360 506Google Scholar
  16. 16.
    Moghimi A, Moosavi S M, Kordestani D, Maddah B, Shamsipur M, Aghabozorg H, Ramezanipour F and Kickelbick G 2007 Pyridine-2,6-bis(monothiocarboxylic) acid and 2-aminopyridine as building blocks of a novel proton transfer compound: Solution and X-ray crystal structural studies J. Mol. Struct. 828 38CrossRefGoogle Scholar
  17. 17.
    Vogel A I 1989 Text Book of Practical Organic Chemistry Vth ed. (London: Longman) p. 268Google Scholar
  18. 18.
    Ahmad N, Levison J J, Robinson S D, Uttley M F, Wonchoba E R and Parshall G W 1974 Complexes of Ruthenium, Osmium, Rhodium, and Iridium Containing Hydride Carbonyl, or Nitrosyl Ligands Inorg. Synth. 15 45Google Scholar
  19. 19.
    Venanzi J 1958 Tetrahedral nickel(II) complexes and the factors determining their formation. Part I. Bis triphenylphosphine nickel(II) compounds J. Chem. Soc. 719 Google Scholar
  20. 20.
    Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 Olex2: A complete structure solution, refinement and analysis program J. Appl. Cryst. 42 339CrossRefGoogle Scholar
  21. 21.
    Palatinus L and Chapuis G 2007 Superflip - A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions J. Appl. Cryst. 40 786CrossRefGoogle Scholar
  22. 22.
    Sheldrick G M 2008 A short history of Shelx Acta Cryst. A64 112CrossRefGoogle Scholar
  23. 23.
    Wolfe A, Shimer G H and Meehan T 1987 Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA Biochemistry 26 6392CrossRefGoogle Scholar
  24. 24.
    Cohen G and Eisenberg H 1969 Viscosity and sedimentation study of sonicated DNA–proflavine complexes Biopolymers 8 45CrossRefGoogle Scholar
  25. 25.
    Van de Weert M and Stella L 2010 Fluorescence Quenching to Study Protein-ligand Binding: Common Error J. Fluoresc. 20 625CrossRefGoogle Scholar
  26. 26.
    Jiang M, Xie M X, Zheng D, Liu Y, Li X Y and Chen X 2004 Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin J. Mol. Struct. 692 71CrossRefGoogle Scholar
  27. 27.
    Carmona P 1980 Vibrational spectra and structure of crystalline dipicolinic acid and calcium dipicolinatetrihydrate Spectrochim. Acta A36 705CrossRefGoogle Scholar
  28. 28.
    Robinson S D and Uttley M F 1973 Complexes of the platinum metals. Part II. Carboxylato(triphenylphosphine) derivatives of ruthenium, osmium, rhodium, and iridium J. Chem. Soc. Dalton Trans. 1912Google Scholar
  29. 29.
    González-Baro A C, Pis-Diez R, Piro O E and Parajón-Costa B S 2008 Crystal structures, theoretical calculations, spectroscopic and electrochemical properties of Cr(III) complexes with dipicolinic acid and 1,10-phenantroline Polyhedron 27 502CrossRefGoogle Scholar
  30. 30.
    Sengupta P, Ghosh S and Mak T C W 2001 A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium(II) and X-ray structural characterisation of the biologically active trans-[Ru(PPh3)2(L1H)2] (L1H2=pyridine 2,3-dicarboxylic acid) Polyhedron 20 975CrossRefGoogle Scholar
  31. 31.
    Clark R J H and Williams C S 1965 The Far-Infrared Spectra of Metal-Halide Complexes of Pyridine and Related Ligands Inorg. Chem. 4 350CrossRefGoogle Scholar
  32. 32.
    Gill N S, Nuttal R H, Scaife D E and Sharp D W A 1961 The infra-red spectra of pyridine complexes and pyridinium salts J. Inorg. Nucl. Chem. 18 79CrossRefGoogle Scholar
  33. 33.
    Kamatchi T S, Chitrapriya N, Lee H, Fronczek C F, Fronczek F R and Natarajan K 2012 Ruthenium(II)/(III) complexes of 4-hydroxy-pyridine-2,6-dicarboxylic acid with PPh3/AsPh3 as co-ligand: Impact of oxidation state and co-ligands on anticancer activity in vitro Dalton Trans. 41 2066CrossRefGoogle Scholar
  34. 34.
    Prabhakaran R, Krishnan V, Pasumpon K, Sukanya D, Wendel E, Jayabalakrishnan C, Bertagnolli H and Natarajan K 2006 Preparation, spectral characterization, electrochemistry, EXAFS, antibacterial and catalytic activity of new ruthenium (III) complexes containing ONS donor ligands with triphenylphosphine/arsine Appl. Organomet. Chem. 20 203CrossRefGoogle Scholar
  35. 35.
    Archaryya R, Basuli F, Peng S M, Lee G H, Falvello L R and Bhattacharya S 2006 Rhodium Assisted C−H Activation of Benzaldehyde Thiosemicarbazones and Their Oxidation via Activation of Molecular Oxygen Inorg. Chem. 45 1252CrossRefGoogle Scholar
  36. 36.
    Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and CoordinationCompounds sixth edn. Part B (New York: Wiley) 64 p. 58Google Scholar
  37. 37.
    Basuli F, Peng S M and Bhattacharya S 2001 Chemical Control on the Coordination Mode of Benzaldehyde Semicarbazone Ligands. Synthesis, Structure, and Redox Properties of Ruthenium Complexes Inorg. Chem. 40 1126CrossRefGoogle Scholar
  38. 38.
    Srivastava R S and Fronczek F R 2001 Synthesis and crystal structures of carbonyl derivatives of chloride–tetramethylenesulfoxide–ruthenium(III) complexes: [RuCl3(TMSO)2(CO)] and [H(TMSO)2] [RuCl4(TMSO)(CO)] Inorg. Chim. Acta 322 32CrossRefGoogle Scholar
  39. 39.
    Hijazi A, Djukic J P, Pfeffer M, Ricard L, Gruber N K, Raya J, Bertani P and De Cian A 2006 Direct Orthoruthenation of Planar Prochiral Pyridine Derivatives by C−H Bond Activation with [Ru(CO)2Cl2]n and Its Unexpected Stereo selectivity Inorg. Chem. 45 4589Google Scholar
  40. 40.
    Chitrapriya N, Mahalingam V, Zeller M and Natarajan K 2008 Synthesis, characterization and crystal structures of cyclometallatedRu(II) carbonyl complexes formed by hydrazones Polyhedron 27 1573CrossRefGoogle Scholar
  41. 41.
    Sengupta P, Dinda R, Ghosh S and Sheldrick W S 2001 Synthesis and characterisation of some ruthenium(II) complexes of α-N heterocyclic carboxylic acids- X-ray structures of cis-[Ru(PPh3)2(L1)2]. 2CH3OH and cis-[Ru(PPh3)2(L3H)2](L1H= pyridine 2-carboxylic acid and L3H2=imidazole 4,5-dicarboxylic acid) Polyhedron 20 3349CrossRefGoogle Scholar
  42. 42.
    Sengupta P, Ghosh V and Mak T C W 2001 A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium (II) and X-ray structural characterization of the biologically active trans-[Ru(PPh3)2(L1H2)] (L1H2= pyridine 2,3-dicarboxylic acid) Polyhedron 20 975CrossRefGoogle Scholar
  43. 43.
    Borah M J, Singh R K B, Sinha U B, Swu T and Borah P J 2012 Synthesis through proton transfer reaction, structure and spectroscopic characterisation of novel anionic nickel (II) complex with pyridine-2,6-dicarboxylic acid and 4-aminobenzenesulfonamide J. Chem. Crystallogr. 42 67CrossRefGoogle Scholar
  44. 44.
    Bai G Y, Wang K Z and Duan L H 2004 Luminiscent pH sensing and DNA binding properties of a noel ruthenium (II) complex J. Inorg. Biochem. 98 1017CrossRefGoogle Scholar
  45. 45.
    Tysoe S A, Kopelman R and Schelzig D 1999 Flipping the molecular light switch off: Formation of DNA- bound heterobimetallic complexes using Ru(bpy)2tpphz2+ and transition metal ions Inorg. Chem. 38 5196CrossRefGoogle Scholar
  46. 46.
    Hu Y J, Liu Y, Wang J B, Xiao X H and Qu S S 2004 Study of the interaction between mono ammonium glycyrrhizinate and bovine serum albumin J. Pharm. Biomed. Anal. 36 915CrossRefGoogle Scholar
  47. 47.
    Yue Y Y, Chen X G, Qin J and Yao X J 2008 Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling Dye. Pigm. 79 176CrossRefGoogle Scholar
  48. 48.
    Liu H Y, Xu Z H, Liu X H, Xi P X and Zeng Z Z 2009 Analysis of binding interaction between bovine serum albumin and cobalt (II) complex with salicylaldehyde-2-phenylquinoline-4-carboylhydrazone Chem. Pharm. Bull. 57 1237CrossRefGoogle Scholar
  49. 49.
    Jiang M, Xie M. X. Zheng D, Liu Y, Li X Y and Chen X 2004 Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin J. Mol. Struct. 692 71CrossRefGoogle Scholar
  50. 50.
    Wang N, Ye L, Zhao B Q and Yu J X 2008 Spectroscopic studies on interaction of efonidipine with bovine serum albumin J. Med. Biol. Res. 41 589CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Nirmala College for WomenBharathiar UniversityCoimbatoreIndia
  2. 2.Department of ChemistryBharathiar UniversityCoimbatoreIndia
  3. 3.Department of ChemistryDurham UniversityDurhamUK

Personalised recommendations