Coupling of \(\hbox {CH}_{3}\)OH and \(\hbox {CO}_{2}\) with 2-cyanopyridine for enhanced yields of dimethyl carbonate over \(\text {ZnO}\)\(\text {CeO}_{2}\) catalyst

  • Prathap Challa
  • Venkata Rao M
  • Nagaiah P
  • Nagu A
  • David Raju B
  • Rama Rao K SEmail author
Regular Article


The present work is aimed to produce dimethyl carbonate by coupling of \(\hbox {CH}_{3}\)OH and \(\hbox {CO}_{2}\) with 2-cyanopyridine over ZnO–\(\text {CeO}_{2}\) catalysts prepared by co-precipitation method. These catalysts were characterized by XRD, TEM, UV-Vis DRS, BET surface area, \(\hbox {CO}_{2}\) and \(\hbox {NH}_{3}\)-TPD techniques and applied for the titled reaction. Among the investigated catalysts 10ZnO–90\(\text {CeO}_{2 }\) catalyst with \(\text {CeO}_{2}\) crystallite size 8.0 nm exhibited 96% conversion of methanol with 99% selectivity to dimethyl carbonate. The superior catalytic activity is a unified effect of crystalline size of \(\text {CeO}_{2}\) and presence of an optimum number of acidic and basic sites. This protocol offers enhanced conversion of methanol with the simultaneous conversion of 2-cyanopyridine into 2-picolinamide by removing water molecules formed in the reaction.

Graphic Abstract

Incorporation of ZnO with \(\text {CeO}_{2}\) enhanced the number of active sites, i.e., acidic and basic sites due to synergetic effect between ZnO and \(\text {CeO}_{2}\). The role of 2-cyano pyridine is to act as a dehydrating agent for the removal of \(\hbox {H}_{2}\hbox {O}\).


Dimethyl carbonate methanol carbon dioxide 2-cyano pyridine acid-base property 


  1. 1.
    Wang D, Zhang X, Ma J, Yu H, Shen J and Wei W 2016 La-modified mesoporous Mg-Al mixed oxides: effective and stable base catalysts for the synthesis of dimethyl carbonate from methyl carbamate and methanol Catal. Sci. Technol. 6 1530CrossRefGoogle Scholar
  2. 2.
    Praveen K, Vimal Chandra S and Indra Mani M 2015 Dimethyl carbonate synthesis via transesterification of propylene carbonate with methanol by ceria-zinc catalysts: role of catalyst support and reaction parameters Korean J. Chem. Eng. 32 1774CrossRefGoogle Scholar
  3. 3.
    Aouissi A, Abdullah Al-Othman Z and Al-Amro A 2010 Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over \(\text{ Co }_{1.5}\text{ PW }_{12}\text{ O }_{40}\) keggin-type heteropolyanion Int. J. Mol. Sci. 11 1343CrossRefGoogle Scholar
  4. 4.
    Lee H J, Park S, Kyu Song I and Chul Jung J 2011 Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over \(\text{ Ga }_{2}\text{ O }_{3}/\text{ Ce }_{0.6}\text{ Zr }_{0.4}\text{ O }_{2}\) catalysts: Effect of acidity and basicity of the Catalysts Catal. Lett. 141 531CrossRefGoogle Scholar
  5. 5.
    Jun B, Min X, Shuanjin W, Xiaojin W, Yixin L and Yuezhong M 2009 Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst Chem. Eng. J. 147 287CrossRefGoogle Scholar
  6. 6.
    Ki Hyuk K, Wangrae J, Chang Hoon L, Mieock K, Dong Baek K, Boknam J and In Kyu S 2013 Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over \(\text{ CeO }_{2}(X)\)–ZnO(1-\(X)\) nano-catalysts J. Nanosci. Nanotechnol. 13 8116CrossRefGoogle Scholar
  7. 7.
    Hye Jin L, Sunyoung P, Ji Chul J and In Kyu S 2011 Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over \(\text{ H }_{3}\text{ PW }_{12}\text{ O }_{40}/\text{ Ce }_{X}\text{ Zr }_{1-X}~\text{ O }_{2}\) catalysts: Effect of acidity of the catalysts Korean J. Chem. Eng. 28 1518CrossRefGoogle Scholar
  8. 8.
    Omae I 2006 Aspects of carbon dioxide utilization Catal. Today 115 33CrossRefGoogle Scholar
  9. 9.
    Masayoshi H, Masazumi T, Yoshinao N, Satoru S, Kimihito S, Ken-ichiro F and Keiichi T 2013 Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine ChemSusChem 6 1341CrossRefGoogle Scholar
  10. 10.
    Jung K T and Bell A T 2001 An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over Zirconia J. Catal. 204 339CrossRefGoogle Scholar
  11. 11.
    Tomishige K and Kunimori K 2002 Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using \(\text{ CeO }_{2}\)-\(\text{ ZrO }_{2}\) solid solution heterogeneous catalyst: effect of \(\text{ H }_{2}\)O removal from the reaction system Appl. Catal. A Gen237 103CrossRefGoogle Scholar
  12. 12.
    Du M, Li Q, Dong W, Geng T and Jiang Y 2012 Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by \(\text{ K }_{2}\text{ CO }_{3}\)/MgO Res. Chem. Intermed. 38 1069CrossRefGoogle Scholar
  13. 13.
    Bian J, Xiao M, Wang S, Lu Y and Meng Y 2009 Graphite oxide as a novel host material of catalytically active Cu–Ni bimetallic nano particles Catal. Commun. 10 1529CrossRefGoogle Scholar
  14. 14.
    Jiang C, Guo Y, Wang C, Hu C, Wu Y and Wang E 2003 Direct synthesis of dimethyl carbonate from \(\text{ CO }_{2}\) and \(\text{ CH }_{3}\)OH using 0.4 nm molecular sieves supported Cu-Ni bimetal catalyst Appl. Catal. A Gen. 256 203CrossRefGoogle Scholar
  15. 15.
    Praveen K, Patrick W, Vimal Chandra S, Roger G and Indra Mani M 2015 Dimethyl carbonate synthesis from carbon dioxide using ceria–zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling J. Environ. Chem. Eng. 3 2943CrossRefGoogle Scholar
  16. 16.
    Mishra B and Rao G 2006 Promoting effect of ceria on the physicochemical and catalytic properties of \(\text{ CeO }_{2}\)–ZnO composite oxide catalysts J. Mol. Catal. A - Chem. 243 204CrossRefGoogle Scholar
  17. 17.
    Tighe C, Cabrera R, Gruar R and Darr J 2013 Scale up production of nanoparticles: continuous supercritical water synthesis of Ce–Zn oxides Ind. Eng. Chem. Res. 52 5522CrossRefGoogle Scholar
  18. 18.
    Bensalem A, Muller J C and Bozon-Verduraz F 1992 Faraday communications. From bulk \(\text{ CeO }_{2}\) to supported cerium–oxygen clusters: a diffuse reflectance approach J. Chem. Soc., Faraday Trans. 88 153CrossRefGoogle Scholar
  19. 19.
    Bensalem A, Bozon-Verduraz F, Delamar M and Bugli G 1995 Preparation and characterization of highly dispersed silica-supported ceria Appl. Catal. A Gen. 121 81CrossRefGoogle Scholar
  20. 20.
    Zaki M, Hussein G, Mansour S, Ismail H and Mekhemer G 1997 Ceria on silica and alumina catalysts: dispersion and surface acid-base properties as probed by X-ray diffractometry, UV–Vis diffuse reflectance and in situ IR absorption studies Colloid Surf. A 127 47CrossRefGoogle Scholar
  21. 21.
    Hongyan L, Fei Z, Yisong L, Guangyue W and Feng P 2013 Correlation of oxygen vacancy variations to bandgap changes in epitaxial ZnO thin films Appl. Phys. Lett. 102 181908CrossRefGoogle Scholar
  22. 22.
    Saravanan R, Mansoob Khan M, Gracia F, Qin J, Vinod Kumar G and Stephen A 2016 \(\text{ Ce }^{3+}\)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/\(\text{ CeO }_{2}\) nanocomposite Sci. Rep. 6 31641CrossRefGoogle Scholar
  23. 23.
    Saravanan R, Karthikeyan N, Govindan S, Narayanan V and Stephen A 2012 Photocatalytic degradation of organic dyes using ZnO/\(\text{ CeO }_{2}\) nanocomposite material under visible light Adv. Mat. Res. 584 381Google Scholar
  24. 24.
    Iuliia P, Venkata Narayana K, Sebastian W and Andreas M 2015 Continuous synthesis of diethyl carbonate from ethanol and \(\text{ CO }_{2}\) over Ce-Zr-O catalysts Catal. Sci. Technol. 5 2322CrossRefGoogle Scholar
  25. 25.
    Tian-Yi M, Zhong-Yong Y and Jian-Liang C 2010 Hydrangea like Meso-macroporous ZnO-\(\text{ CeO }_{2}\) binary oxide materials synthesis, photocatalysis and CO oxidation Eur. J. Inorg. Chem. 2010 716CrossRefGoogle Scholar
  26. 26.
    Burroughs P, Hamnett A, Orchard A F and Thornton G 1976 Satellite structure in the \(X\)-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium J. Chem. Soc., Dalton Trans. 17 1686Google Scholar
  27. 27.
    Shingo W, Xiaoliang M and Chunshan S 2009 Characterization of structural and surface properties of nano crystalline \(\text{ TiO }_{2}\)-\(\text{ CeO }_{2}\) mixed oxides by XRD, XPS, TPR, and TPD J. Phys. Chem. C 113 14249CrossRefGoogle Scholar
  28. 28.
    Benjaram M R, Komateedi N R and Pankaj B 2009 Copper promoted cobalt and nickel catalysts supported on ceria-alumina mixed oxide: Structural characterization and CO oxidation activity Ind. Eng. Chem. Res. 48 8478CrossRefGoogle Scholar
  29. 29.
    Beche E, Charvin P, Perarnau D, Abanades S and Flamant G 2008 Ce 3d XPS investigation of cerium oxides and mixed cerium oxide \((\text{ Ce }_{{\rm x}}\text{ Ti }_{{\rm y}}\text{ O }_{{\rm z}})\) Surf. Interface Anal. 40 264CrossRefGoogle Scholar
  30. 30.
    Miki T, Ogawa T, Haneda M, Kakuta N, Ueno A, Tateishi S, Matsuura S and Sato M 1990 Enhanced oxygen storage capacity of cerium oxides in cerium dioxide/lanthanum sesqui oxide/alumina containing precious metals J. Phys. Chem. 94 6464CrossRefGoogle Scholar
  31. 31.
    Wu X, Xiao M, Meng Y and Lu Y 2006 Synthesis of copper-nickel/SBA-15 from rice husk ash catalyst for dimethyl carbonates production from methanol and carbon dioxide J. Mol. Catal. A: Chem. 249 93CrossRefGoogle Scholar
  32. 32.
    Stoian D, Taboada E, Llorca J, Molins E, Medina F and Segarra A 2013 Boosted \(\text{ CO }_{2}\) reaction with methanol to yield dimethyl carbonate over Mg-Al hydrotalcite - silicalyogels Chem. Commun. 49 5489CrossRefGoogle Scholar
  33. 33.
    Yingjie Z, Shuanjin W, Min X, Dongmei H, Yixin L and Yuezhong M 2012 Novel Cu–Fe bimetal catalyst for the formation of dimethyl carbonate from carbon dioxide and methanol RSC Adv. 2 6831CrossRefGoogle Scholar
  34. 34.
    Qinghai C, Chao J, Bin L, Hejin T and Yongkui S 2005 Structure of the active sites on \(\text{ H }_{3}\text{ PO }_{4}\)/\(\text{ ZrO }_{2}\) catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide Catal. Lett. 103 225CrossRefGoogle Scholar
  35. 35.
    Rim S, Suela K, Tobias H, David M and Basudeb S 2015 Greener synthesis of dimethyl carbonate using a novel Ceria-zirconia oxide/Graphene nanocomposite catalyst Appl. Catal. B-Environ. 168 353Google Scholar
  36. 36.
    Zhongwei F, Yunyun Z, Yuehong Y, Lizhen L, Min X, Dongmei H, Shuanjin W and Yuezhong M 2018 \(\text{ TiO }_{2}\)-doped \(\text{ CeO }_{2}\) nanorod catalyst for direct conversion of \(\text{ CO }_{2}\) and \(\text{ CH }_{3}\)OH to dimethyl carbonate: Catalytic performance and kinetic study ACS Omega 3 198Google Scholar
  37. 37.
    Unnikrishnan P and Srinivas D 2016 Direct synthesis of dimethyl carbonate from \(\text{ CO }_{2}\) and methanol over \(\text{ CeO }_{2}\) catalysts of different morphologies J. Chem. Sci. 128 6Google Scholar
  38. 38.
    Masayoshi H, Masazumi T, Yoshinao N, Kenji N, Kimihito S and Keiichi T 2014 Organic carbonate synthesis from \(\text{ CO }_{2}\) and alcohol over \(\text{ CeO }_{2}\) with 2-cyanopyridine: scope and mechanistic studies J. Catal. 318 95CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.CSIR- Academy of Scientific and Innovative Research (CSIR-AcSIR)New DelhiIndia
  2. 2.Catalysis and Fine Chemicals DepartmentCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations