Skip to main content
Log in

Beryllium ion sensing through the ion pair formation between the electrochemically reduced ferrocenyl naphthoquinone radicals and \(\hbox {Be}^{2+}\) ions

Journal of Chemical Sciences Aims and scope Submit manuscript

Cite this article

Abstract

We explored the mechanistic aspects of ion pair formation between electrochemically reduced radicals (Fccnq1a\(^{\bullet {_\mathbf{-}}}\) /Fccnq1b\(^{\bullet {_\mathbf{-}}})\) and dianions (Fc–cnq–1a\(^{2- }\)/Fc–cnq–1b\(^{2-})\) of ferrocenyl naphthoquinones (Fc–cnq–1a and Fc–cnq–1b) and several metal ions by cyclic voltammetry (CV), square wave voltammetry (SWV) and spectroelectrochemistry, for the first time. The experiments demonstrated that Fc–cnq–1a\(^{2-}\)/Fc–cnq–1b\(^{2-}\) were moderately affected with Na\(^{+}\), K\(^{+ }\) and Cs\(^{+}\) by slightly shifting to the anodic side, but were strongly influenced with Li\(^{+}\) ion. Fc–cnq–1a\(^{\bullet {_\mathbf{-}}}\)/Fc–cnq–1b\(^{\bullet {_\mathbf{-}}}\) were not affected by alkali metal ions, indicating no ion pair formation between the radicals and these ions. Fc–cnq–1a\(^{2-}\)/Fc–cnq–1b\(^{2-}\) was not evolved in the presence of Be\(^{2+}\), Mg\(^{2+}\) and Ca\(^{2+}\), but Fc–cnq–1a\(^{\bullet {_\mathbf{-}}}\) /Fc–cnq–1b\(^{\bullet {_\mathbf{-}}}\) appeared with their cathodic waves, and participated with intermediates, [(Fc–cnq–1b)\(_{2}{^{\bullet {_\mathbf{-}}}}\)–Be\(^{2+}\) and [(Fc–cnq–1a)\(^{\bullet {_\mathbf{-}}}\)–Cl]. The most pronounced effect on the ion-pair formation of the Fc–cnq–1a\(^{\bullet {_\mathbf{-}}}\)/Fc–cnq–1b\(^{\bullet {_\mathbf{-}}}\) was observed in Be\(^{2+}\), indicating that Fc–cnq–1a or Fc–cnq–1b can selectively sense ultra-trace amount of Be\(^{2+}\) (LOD = 3.6 ppb) among the other metal ions with SWV titration, for the first time, based on the strong ion pair formation reaction between the radicals and Be\(^{2+}\).

Graphical abstract

Synopsis Ultra-trace amount of beryllium ion (\({\hbox {Be}}^{2+}\)) sensing (LOD = 3.6 ppb) through the ion pair formation between the electrochemically reduced ferrocenyl naphthoquinone radicals (Fc–cnq–1a\(^{\bullet {_\mathbf{-}}}\)/Fc–cnq–1b\(^{\bullet {_\mathbf{-}}})\) and \({\hbox {Be}}^{2+}\) ions by cyclic voltammetry (CV), square wave voltammetry (SWV), and for the first time spectroelectrochemistry is reported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Chambers J Q 1988 In The Chemistry of the Quinonoid Compounds Z Rappoport and Z Patai (Eds.) (New York: Wiley) Vol. 2 Ch. 12 p. 719

  2. Lehmann M W and Evans D H 2001 Mechanism of the electrochemical reduction of 3,5-di-tert-butyl-1,2-benzoquinone. Evidence for a concerted electron and proton transfer reaction involving a hydrogen-bonded complex as reactant J. Phys. Chem. B 105 8877

    Article  CAS  Google Scholar 

  3. Jin B, Huang J, Zhao A, Zhang S, Tian Y and Yang J 2010 Direct evidence of hydrogen-bonding and/or protonation effect on p-benzoquinone electrochemical reduction by in situ IR spectroelectrochemical study J. Electroanal. Chem. 650 116

    Article  CAS  Google Scholar 

  4. Dagdevren M, Yilmaz I, Yucel B and Emirik M 2015 Novel ferrocenyl naphthoquinone fused crown ether as a multisensor for water determination in acetonitrile and selective cation binding J. Phys. Chem. B 119 12464

    Article  CAS  Google Scholar 

  5. Yucel B, Sanli B, Soylemez H and Yilmaz I 2011 Synthesis and electro-spectroelectrochemistry of ferrocenyl naphthoquinones Tetrahedron 67 1406

    Article  CAS  Google Scholar 

  6. Hoshino T, Oyama M and Okazaki S 2000 Substituent effect on ion pair formation reactions between 1,4-benzoquinone derivative anion radicals and metal cations Electroanalysis 12 1373

    Article  CAS  Google Scholar 

  7. Oyama M, Takei A and Okazaki S 1995 Direct observation of ion pair formation between 2,3-dichloro-5,6-dicyanobenzoquinone dianion and sodium ion J. Chem. Soc. Chem. Commun. 18 1909

    Article  Google Scholar 

  8. Oyama M, Marken F, Webster R D, Cooper J A, Compton R G and Okazaki S 1998 Ion pair formation between the electrogenerated 2,3-dichloro-5,6-dicyano-1,4-benzoquinone dianion and the sodium ion at platinum surfaces J. Electroanal. Chem. 451 193

    Article  CAS  Google Scholar 

  9. Oyama M, Webster R D, Suárez M, Marken F, Compton R G and Okazaki S 1998 Mechanistic aspects of the electrochemical reduction of 7,7,8,8-tetracyanoquinodi-methane in the presence of Mg\(^{2+}\) or Ba\(^{2+ }\) J. Phys. Chem. B 102 6588

    Article  CAS  Google Scholar 

  10. Alcay Y, Yavuz O, Gelir A, Kirlangic Atasen S, Karaoglu K, Yucel B, Şenyurt Tuzun N and Yilmaz I 2018 New ferrocenyl naphthoquinone fused crown ether chemosensors: Highly selective, kinetically and regio controlled colorimetric, beryllium ion recognition J. Organomet. Chem. 868 131

    Article  CAS  Google Scholar 

  11. Devaraj S, Saravanakumar D and Kandaswamy M 2007 Dual chemosensing properties of new anthraquinone-based receptors toward fluoride ions Tetrahedron 48 3077

    Article  CAS  Google Scholar 

  12. Costentin C 2008 Electrochemical approach to the mechanistic study of proton-coupled electron transfer Chem. Rev. 108 2145

    Article  CAS  Google Scholar 

  13. Beer P D, Gale P A and Chen G Z 1999 Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules Coord. Chem. Rev. 185–186 3

    Article  Google Scholar 

  14. Boulas P L, Gómez-Kaifer M and Echegoyen L 1998 Electrochemistry of supramolecular systems Angew. Chem. Int. Ed. 37 216

    Article  CAS  Google Scholar 

  15. Wang J, Thongngamdee S and Lu D 2006 Adsorptive stripping voltammetric measurements of trace berllyium at the mercury film electrode Anal. Chim. Acta 564 248

    Article  CAS  Google Scholar 

  16. McCanlies E C, Kreiss K, Andrew M and Weston A 2003 HLA-DPB1 and chronic beryllium disease: A huge review Am. J. Epidemiol. 157 388

    Article  Google Scholar 

  17. Stoeckle J D, Hardy H L and Weber A L 1969 Chronic beryllium disease: Long-term follow-up of sixty cases and selective review of the literature Am. J. Med. 46 545

    Article  CAS  Google Scholar 

  18. Sawyer R T, Day B J, Fadok V A, Chiarappa-Zucca M, Maier L A, Fontenot A P, Silveira L and Newman L S 2004 Beryllium-ferritin: Lymphocyte proliferation and macrophage apoptosis in chronic beryllium disease Am. J. Respir. Cell Mol. Biol. 31 470

    Article  CAS  Google Scholar 

  19. Reeves A L, Deitch D and Vorwald A J 1967 Beryllium carcinogenesis. I. Inhalation exposure of rats to beryllium sulfate aerosol Cancer Res. 27 439

    CAS  PubMed  Google Scholar 

  20. Meyer K C 1994 Beryllium and lung disease Chest 106 942

    Article  CAS  Google Scholar 

  21. IARC International Agency for Research on Cancer 1993 Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC monographs on the evaluation of carcinogenic risks to humans (Lyon, France)

  22. WHO World Health Organization 2001 Beryllium and beryllium compounds. Concise international chemical assessment document No. 32 Geneva

  23. Sandell E B and Onishi H 1978 Photometric Determination of Trace Metals Part 1 4\(^{{\rm th}}\) edn. (New York: Wiley)

    Google Scholar 

  24. Vin Y Y and Khopkar S M 1998 Extraction-chromatographic separation of beryllium with bis(2-ethylhexyl)phosphoric acid Analyst 113 175

    Article  Google Scholar 

  25. Agnihotri N K, Singh H B, Sharma R L and Singh V K 1993 Simultaneous determination of beryllium and aluminium in mixtures using derivative Talanta 40 415

    Article  CAS  Google Scholar 

  26. Snell F D and Hilton C L 1968 Encyclopedia of Industrial Chemical Analysis (New York: Wiley) Vol. 7 pp. 112–115

  27. Shaw M J, Hill S J, Jones P and Nesterenko P N 2000 Determination of beryllium in a stream sediment by high-performance chelation ion chromatography J. Chromatogr. A 876 127

    Article  CAS  Google Scholar 

  28. Matsumiya H and Hoshino H 2003 Selective determination of Beryllium(II) Ion at picomole per decimeter cubed levels by kinetic differentiation mode reversed-phase high-performance liquid chromatography with fluorometric detection using 2-(2’-hydroxyphenyl)-10-hydroxybenzo[H]quinoline as precolumn chelating reagent Anal. Chem. 75 413

    Article  CAS  Google Scholar 

  29. Bashir W and Paull B 2001 Sensitive and selective ion chromatographic method for the determination of trace beryllium in water samples J. Chromatogr. A 910 301

    Article  CAS  Google Scholar 

  30. Snell F D 1978 Beryllium In Photometric and Fluorometric Methods of Analysis Metals (New York: Wiley) Part 1 pp. 661–701

  31. Measures C I and Edmond J M 1986 Determination of beryllium in natural waters in real time using electron capture detection gas chromatography Anal. Chem. 58 2065

    Article  CAS  Google Scholar 

  32. Burguera J L, Burguera M, Rondon C, Carrero P, Brunetto M R and Petit de Pena Y 2000 Determination of beryllium in natural and waste waters using on-line flow-injection preconcentration by precipitation/dissolution for electrothermal atomic absorption spectrometry Talanta 52 27

    Article  CAS  Google Scholar 

  33. Štěpnička P (Ed.) 2008 Ferrocenes: Ligands, Materials and Biomolecules (New York: Wiley)

    Google Scholar 

  34. Macháčková L and Žemberyová M 2012 Cloud point extraction for preconcentration of trace beryllium and chromium in water samples prior to electrothermal atomic absorption spectrometry Anal. Methods 4 4042

    Article  Google Scholar 

  35. Wang J and Tian B 1992 Trace measurements of beryllium by adsorptive stripping voltammetry and potentiometry Anal. Chim. Acta 270 137

    Article  CAS  Google Scholar 

  36. Sun C, Wang J, Hu W and Xie T 1992 Adsorption voltammetry of beryllium in the presence of 4-[(4-diethylamino-2-hydroxyphenyl)azo]-5hydroxynaphthalene-2,7-disul phonic acid (Beryllon III) Anal. Chim. Acta 259 319

    Article  CAS  Google Scholar 

  37. Jose R, Datta P and Sreeja B 2017 Fabrication of anchored complexes as electrodes for sensing heavy metal ions by electrochemical method Oriental. J. Chem33 1438

    Article  CAS  Google Scholar 

  38. Lin X Q and Kadish K M 1985 Vacuum-tight thin-layer spectroelectrochemical cell with a doublet platinum gauze working electrode Anal. Chem. 57 1498

    Article  CAS  Google Scholar 

  39. Laviron E 1986 Electrochemical reactions with protonations at equilibrium: Part XIII. Experimental study of the homogeneous electron exchange in quinone/dihydroquinone systems J. Electroanal. Chem. 208 357

    Article  CAS  Google Scholar 

  40. Peover M E 1967 In Electroanalytical Chemistry A J Bard (Ed.) (New York: M. Dekker) Vol. 2 p. 1

  41. Laviron E 1984 Electrochemical reactions with protonations at equilibrium: Part XII. The 2e\(^{-}\), 2H\(^{+}\) homogeneous isotopic electron exchange reaction (nine-member square scheme) J. Electroanal. Chem. 169 29

    Article  CAS  Google Scholar 

  42. Yilmaz I 2008 In situ monitoring of metallation of metal-free phthalocyaninevia UV–Vis and steady-state fluorescence techniques. Thin-layer UV–Vis and fluorescence spectroelectrochemistry of a new non-aggregating and electrochromic manganese(3+) phthalocyanine New J. Chem. 32 37

    Article  CAS  Google Scholar 

  43. Kadish K M, Nakanishi T, Gürek A, Ahsen V and Yilmaz I 2001 Electrochemistry of a double-decker lutetium(III) phthalocyanine in aqueous media. The first evidence for five reductions J. Phys. Chem. B 105 9817

    Article  CAS  Google Scholar 

  44. Bard A J and Faulkner L R 2001 Electrochemical Methods: Fundamentals and Applications 2\(^{{\rm nd}}\) edn. (New York: Wiley)

    Google Scholar 

  45. Petrucci R H, Herring F G, Madura J D and Bissonnette C 2010 General Chemistry Principles and Modern Applications 10\(^{{\rm th}}\) edn. (Canada, Toronto) p. 921

  46. Yilmaz I, Arslan S, Guney S and Becerik I 2007 Synthesis, electro-spectroelectrochemical characterization and electrocatalytic behavior towards dioxygen reduction of a new water-soluble cobalt phthalocyanine containing naphthoxy-4-sulfonic acid sodium salt Electrochim. Acta 52 6611

    Article  CAS  Google Scholar 

  47. Rocha D P, Cardoso R M, Mendonça D M H, Richter E M, Silva S G, Batista A D and Munoz R A A 2018 Solenoid micro-pumps: A new tool for sample introduction in batch injection analysis systems with electrochemical detection Electroanalysis 30 180

    Article  CAS  Google Scholar 

  48. Rocha D P, Cardoso R M, Mendonça D M H, Richter E M, Silva S G, Batista A D and Munoz R A A 2018 Solenoid micro-pumps: A new tool for sample introduction in batch injection analysis systems with electrochemical detection Electroanalysis 30 180

    Article  CAS  Google Scholar 

  49. Desimoni E and Brunetti B 2013 Presenting analytical performances of electrochemical sensors. Some suggestions Electroanalysis 25 1645

    Article  CAS  Google Scholar 

  50. Lin X, Lu Z, Zhang Y, Liu, Mo G, Li J and Ye J 2018 A glassy carbon electrode modified with a bismuth film and laseretched graphene for simultaneous voltammetric sensing of Cd(II) and Pb(II) Microchim. Acta 185 438

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from The Scientific and Technological Research Council of Turkey (TUBITAK) (Project Number: 113Z309) and Research Fund of the Istanbul Technical University. (Project Number: 1312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Yilmaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1001 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atasen, S.K., Alcay, Y., Yavuz, O. et al. Beryllium ion sensing through the ion pair formation between the electrochemically reduced ferrocenyl naphthoquinone radicals and \(\hbox {Be}^{2+}\) ions. J Chem Sci 131, 41 (2019). https://doi.org/10.1007/s12039-019-1616-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1616-7

Keywords

Navigation