Skip to main content

Advertisement

Log in

Are water-xylitol mixtures heterogeneous? An investigation employing composition and temperature dependent dielectric relaxation and time-resolved fluorescence measurements

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Aqueous xylitol solutions at six different concentrations were studied employing dielectric relaxation (DR) and time-resolved fluorescence (TRF) measurements in the temperature range 295–323 K. The focus was to explore the solution heterogeneity aspect via monitoring the viscosity coupling of the average relaxation rates at various temperatures. TRF measurements were done using both hydrophobic and hydrophilic probes to explore the preferences, if any, for solute locations in these binary mixtures. Energy-selective population excitations and the corresponding fluorescence emissions did not suggest any significant spatial heterogeneity in solution structure within the lifetimes of these probes. DR measurements and TRF experiments indicated mild deviations from the hydrodynamic viscosity dependence of the measured relaxation rates. All these suggest mild spatiotemporal heterogeneity for these water-xylitol mixtures in the temperature range considered. In addition, DR timescales appear to originate from reorientational and H-bond relaxation dynamics, excluding the possibility of full molecular rotations.

Graphical Abstract

Heterogeneity in water-xylitol mixtures was investigated employing dielectric relaxation (DR) and Time-resolved fluorescence (TRF) spectroscopic techniques. Time-resolved anisotropy and DR response were found to depend both on xylitol concentration and temperature. Signature of mild heterogeneity was detected along with presence of water molecules that were slower than bulk-like water. Slower than bulk DR response vanishes with an increase of solution temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vasilescu R, Ionescu A M, Mihai A, Carniciu S and Tîrgovişte C I 2011 Sweeteners and metabolic diseases: Xylitol as a new player Proc. Rom. Acad. Series B 2 125

    Google Scholar 

  2. Steinberg L M, Odusola F and Mandel I D 1992 Remineralizing potential, antiplaque and antigingivitis effects of xylitol and sorbitol sweetened chewing gum Clin. Prev. Dent. 14 31

    CAS  PubMed  Google Scholar 

  3. Miake Y, Saeki Y, Takahashi M and Yanagisawa T 2003 Remineralization effects of xylitol on demineralized enamel J. Electron. Microsc. 52 471

    Article  CAS  Google Scholar 

  4. Makinen K K 2011 Sugar alcohol sweeteners as alternatives to sugar with special consideration of Xylitol Med. Princ. Pract. 20 303

    Article  Google Scholar 

  5. Foster-Powell K, Holt S H A, and Brand-Miller J C 2002 International table of glycemic index and glycemic load values: 2002 Am. J. Clin. Nutr. 76 5

    Article  CAS  Google Scholar 

  6. Förster H, Boecker S and Walther A 1977 Use of xylitol as sugar substitute in diabetic children Fortschr Med. 95 99

    PubMed  Google Scholar 

  7. Pepper T and Olinger P M 1988 Xylitol in sugar-free confections Food Technol. 42 98

    Google Scholar 

  8. Birkhead D 1994 Cariologic aspects of xylitol and its use in chewing gum: A review Acta Odontol. Scand. 52 116

    Article  Google Scholar 

  9. Indra S and Biswas R 2016 Is dynamic heterogeneity of water in presence of a protein denaturing agent different from that in presence of a protein stabilizer? A molecular dynamics simulation study J. Chem. Sci. 128 1943

    Article  CAS  Google Scholar 

  10. Pradhan T, Ghoshal P and Biswas R 2008 Structural transition in alcohol-water binary mixtures: A spectroscopic study J. Chem. Sci. 120 275

    Article  CAS  Google Scholar 

  11. Indra S, Guchhait B and Biswas R 2016 Structural anomaly and dynamic heterogeneity in cycloether/water binary mixtures: Signatures from composition dependent dynamic fluorescence measurements and computer simulations J. Chem. Phys. 144 124506

    Article  Google Scholar 

  12. Gazi H A R and Biswas R 2011 Heterogeneity in binary mixtures of (water \(+\) tertiary butanol): Temperature dependence across mixture composition J. Phys. Chem. A 115 2447

    Article  CAS  Google Scholar 

  13. Sato T and Buchner R 2004 Dielectric relaxation processes in ethanol/water mixtures J. Phys. Chem. A 108 5007

    Article  CAS  Google Scholar 

  14. Gheibi N, Saboury A A, Haghbeen K and Moosavi-Movahedi A A 2006 The effect of some osmolytes on the activity and stability of mushroom tyrosinase J. Biosci. 31 355

    Article  CAS  Google Scholar 

  15. Kaushik J K and Bhat R 1998 Thermal stability of proteins in aqueous polyol solutions: Role of the surface tension of water in the stabilizing effect of polyols J. Phys. Chem. B 102 7058

    Article  CAS  Google Scholar 

  16. Jain N K and Roy I 2009 Effect of trehalose on protein structure Protein Sci. 18 24

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gekko K and Morikawa T 1981 Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures J. Biochem. 90 39

    Article  CAS  Google Scholar 

  18. Mozhaev V V and Martinek K 1984 Structure-stability relationships in proteins: New approaches to stabilizing enzymes Enzyme Microb. Technol. 6 50

    Article  CAS  Google Scholar 

  19. Dipaola G and Belleau B 1978 Polyol-protein interactions. Thermodynamical evidence for a selective solvation of glycerol and hexitols by aqueous P-lactoglobulin Can. J. Chem. 56 848

    Article  CAS  Google Scholar 

  20. Indra S and Biswas R 2016 How heterogeneous are trehalose/glycerol cryoprotectant mixtures? A combined time-resolved fluorescence and computer simulation investigation J. Phys. Chem. B 120 11214

    Article  CAS  Google Scholar 

  21. Nakanishi M and Nozaki R 2010 Dynamics and structure of hydrogen-bonding glass formers: Comparison between hexanetriol and sugar alcohols based on dielectric relaxation Phys. Rev. E 81 041501

    Article  Google Scholar 

  22. Psurek T, Maslanka S, Paluch M, Nozaki R and Ngai K L 2004 Effects of water on the primary and secondary relaxation of xylitol and sorbitol: Implication on the origin of the Johari-Goldstein relaxation Phys. Rev. E 70 011503

    Article  CAS  Google Scholar 

  23. Sidebottom D L 2007 Ultraslow relaxation of hydrogen-bonded dynamic clusters in glass-forming aqueous glucose solutions: A light scattering study Phys. Rev. E 76 011505

    Article  CAS  Google Scholar 

  24. Elamin K, Sjostorm J, Jansson H and Swenson J 2012 Calorimetric and relaxation properties of xylitol-water mixtures J. Chem. Phys. 136 104508

    Article  Google Scholar 

  25. Jansson H, Bergman R and Swenson J 2010 Hidden slow dynamics in water Phys. Rev. Lett. 104 017802

    Article  Google Scholar 

  26. Casalini R and Roland C M 2011 On the low frequency loss peak in the dielectric spectrum of glycerol J. Chem. Phys. 135 094502

    Article  CAS  Google Scholar 

  27. Yomogida Y, Minoguchi A and Nozaki R 2006 Ultraslow dielectric relaxation process in supercooled polyhydric alcohols Phys. Rev. E 73 041510

    Article  Google Scholar 

  28. Kaminski K, Wlodarczyk P, Hawelek L, Adrjanowicz K, Wojnarowska Z, Paluch M and Kaminska E 2011 Comparative dielectric studies on two hydrogen-bonded and van der Waals liquids Phys. Rev. E 83 061506

    Article  CAS  Google Scholar 

  29. Sidebottom D L and Tran T D 2010 Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering Phys. Rev. E 82 051904

    Article  CAS  Google Scholar 

  30. Patkowski A, Gläser H, Kanaya T and Fischer E W 2001 Apparent nonergodic behavior of supercooled liquids above the glass transition temperature Phys. Rev. E 64 031503

    Article  CAS  Google Scholar 

  31. Bergman R, Jansson H and Swenson J 2010 Slow Debye-type peak observed in the dielectric response of polyalcohols J. Chem. Phys. 132 044504

    Article  Google Scholar 

  32. Elamin K, Cazzato S, Sjostorm J, King S M and Swenson J 2013 Long-range diffusion in xylitol–water mixtures J. Phys. Chem. B 117 7363

    Article  CAS  Google Scholar 

  33. Rander D N, Joshi Y S, Kanse K S and Kumbharkhane A C 2016 Dielectric relaxation and hydrogen bonding interaction in xylitol–water mixtures using time domain reflectometry Indian Indian. J. Phys. 90 67

    Article  CAS  Google Scholar 

  34. Turton D A, Hunger J, Stoppa A, Hefter G, Thoman A, Walther M, Buchner R and Wynne K 2009 Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr effect study: Evidence for mesoscopic aggregation J. Am. Chem. Soc. 131 11140

    Article  CAS  Google Scholar 

  35. Hunger J, Stoppa A, Schrödle S, Hefter G and Buchner R 2009 Temperature dependence of the dielectric properties and dynamics of ionic liquids ChemPhysChem 10 723

    Article  CAS  Google Scholar 

  36. Kaatze U and Giese K 1980 Dielectric relaxation spectroscopy of liquids: Frequency domain and time domain experimental methods J. Phys. E: Sci. Instrum. 13 133

    Article  CAS  Google Scholar 

  37. Barthel J, Bachhuber K, Buchner R and Hetzenauer H 1990 Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols Chem. Phys. Lett. 165 369

    Article  CAS  Google Scholar 

  38. Mashimo S and Kuwabara S 1989 The dielectric relaxation of mixtures of water and primary alcohol J. Chem. Phys. 90 3292

    Article  CAS  Google Scholar 

  39. Mukherjee K, Tarif E, Barman A and Biswas R 2017 Dynamics of a PEG based non-ionic deep eutectic solvent: Temperature dependence Fluid Phase Equilib. 448 22

    Article  CAS  Google Scholar 

  40. Mukherjee K, Das A, Choudhury S, Barman A and Biswas R 2015 Dielectric relaxations of (acetamide \(+\) electrolyte) deep eutectic solvents in the frequency window, \(0.2 \le \nu /\text{ GHz }\le 50\): Anion and cation dependence J. Phys. Chem. B 119 8063

    Article  CAS  Google Scholar 

  41. Indra S and Biswas R 2016 Are N-methyl groups of Tetramethylurea (TMU) Hydrophobic? A composition and temperature-dependent fluorescence spectroscopic investigation of TMU/water binary mixtures J. Chem. Sci. 128 753

    Article  CAS  Google Scholar 

  42. Indra S and Biswas R 2015 Heterogeneity in (2-butoxyethanol \(+\) water) mixtures: Hydrophobicity-induced aggregation or criticality-driven concentration fluctuations? J. Chem. Phys. 142 204501

    Article  Google Scholar 

  43. Das A and Biswas R 2015 Dynamic solvent control of a reaction in ionic deep eutectic solvents: Time-resolved fluorescence measurements of reactive and nonreactive dynamics in (choline chloride \(+\) urea) melts J. Phys. Chem. B 119 10102

    Article  CAS  Google Scholar 

  44. Guchhait B and Biswas R 2013 Ionic arrest of segmental motion and emergence of spatio-temporal heterogeneity: A fluorescence investigation of (polyethylene glycol \(+\) electrolyte) composites J. Chem. Phys. 138 114909

    Article  Google Scholar 

  45. Gazi H A R, Kashyap H K and Biswas R 2015 Solvent sorting in (mixed solvent \(+\) electrolyte) systems: Time-resolved fluorescence measurements and theory J. Chem. Sci. 127 61

    Article  Google Scholar 

  46. Guchhait B, Das S, Daschakraborty S and Biswas R 2014 Interaction and dynamics of (alkylamide \(+\) electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity J. Chem. Phys. 140 104514

    Article  Google Scholar 

  47. Pradhan T and Biswas R 2007 Electrolyte-concentration and ion-size dependence of excited-state intramolecular charge-transfer reaction in (alkylamino)benzonitriles: Steady-state spectroscopic studies J. Phys. Chem. A 111 11514

    Article  CAS  Google Scholar 

  48. Gazi H A R, Guchhait B, Daschakraborty S and Biswas R 2011 Fluorescence dynamics in supercooled (acetamide \(+\) calcium nitrate) molten mixtures Chem. Phys. Lett. 501 358

    Article  CAS  Google Scholar 

  49. Guchhait B, Gazi H A R, Kashyap H and Biswas R 2010 Fluorescence spectroscopic studies of (acetamide \(+\) sodium/potassium thiocyanates) molten mixtures: Composition and temperature dependence J. Phys. Chem. B 114 5066

    Article  CAS  Google Scholar 

  50. Pradhan T, Gazi H A R, Guchhait B and Biswas R 2012 Excited state intramolecular charge transfer reaction in non-aqueous reverse micelles: Effects of solvent confinement and electrolyte concentration J. Chem. Sci. 124 355

    Article  CAS  Google Scholar 

  51. Biswas R, Das A R, Pradhan T, Touraud D, Kunz W and Mahiuddin S 2008 Spectroscopic studies of catanionic reverse microemulsion: Correlation with the superactivity of horseradish peroxidase enzyme in a restricted environment J. Phys. Chem. B 112 6620

    Article  CAS  Google Scholar 

  52. Das A, Das S and Biswas R 2013 Fast fluctuations in deep eutectic melts: Multi-probe fluorescence measurements and all-atom molecular dynamics simulation study Chem. Phys. Lett. 581 47

    Article  CAS  Google Scholar 

  53. Horng M L, Gardecki J A and Maroncelli M 1997 Rotational dynamics of coumarin 153: Time-dependent friction, dielectric friction, and other nonhydrodynamic effects J. Phys. Chem. A 101 1030

    Article  CAS  Google Scholar 

  54. Das A, Das S and Biswas R 2015 Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide \(+\) urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations J. Chem. Phys. 142 034505

    Article  Google Scholar 

  55. Cross A J and Fleming G R 1984 Analysis of time-resolved fluorescence anisotropy decays Biophys. J. 46 45

    Article  CAS  Google Scholar 

  56. Koley S, Kaur H and Ghosh S 2014 Probe dependent anomalies in the solvation dynamics of coumarin dyes in dimethyl sulfoxide–glycerol binary solvent: Confirming the local environments are different for coumarin dyes Phys. Chem. Chem. Phys. 16 22352

    Article  CAS  Google Scholar 

  57. Bottcher C J F and Bordewijk P 1978 Theory of Electrical Polarization 2nd edn. (Amsterdam, The Netherlands: Elsevier) Vol. 2

    Google Scholar 

  58. Bevington P R 1969 Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill)

    Google Scholar 

  59. Maryott A A and Smith E R 1951 Table of Dielectric Constants of Pure Liquids National Bureau of Standards Circular 514, United States Department of Commerce

  60. Buchner R, Barthel J and Stauber J 1999 The dielectric relaxation of water between \(0\,^{\circ }\text{ C }\) and \(35\,^{\circ }\text{ C }\) Chem. Phys. Lett. 306 57

    Article  CAS  Google Scholar 

  61. Mukherjee K, Das S, Tarif E, Barman A and Biswas R 2018 Dielectric relaxation in acetamide \(+\) urea deep eutectics and neat molten urea: Origin of time scales via temperature dependent measurements and computer simulations J. Chem. Phys. 149 124501

    Article  Google Scholar 

  62. Dote J L, Kivelson D and Schwartz R N 1981 A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids J. Phys. Chem. 85 2169

    Article  CAS  Google Scholar 

  63. Das A, Biswas R and Chakrabarti J 2011 Dipolar solute rotation in a supercritical polar fluid J. Phys. Chem. A 115 973

    Article  CAS  Google Scholar 

  64. Das A, Biswas R and Chakrabarti J 2013 Dipolar solute rotation in ionic liquids, electrolyte solutions and common polar solvents: Emergence of universality Chem. Phys. Lett. 558 36

    Article  CAS  Google Scholar 

  65. Bottcher C J F 1946 Computation of the radius and the polarizability of a number of ions Rec. Trav. Chim. 65 14

    Article  CAS  Google Scholar 

  66. Lucas M 1976 Size effect in transfer of nonpolar solutes from gas or solvent to another solvent with a view on hydrophobic behavior J. Phys. Chem. 80 359

    Article  CAS  Google Scholar 

  67. Liu F F, Ji L, Zhang L, Dong X Y and Sun Y 2010 Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations J. Chem. Phys. 132 225103

    Article  Google Scholar 

  68. Dutt G B and Ghanty T K 2003 Rotational diffusion of coumarins in electrolyte solutions: The role of ion pairs J. Phys. Chem. B 107 3257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Biswas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 704 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarif, E., Mukherjee, K., Barman, A. et al. Are water-xylitol mixtures heterogeneous? An investigation employing composition and temperature dependent dielectric relaxation and time-resolved fluorescence measurements. J Chem Sci 131, 43 (2019). https://doi.org/10.1007/s12039-019-1614-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1614-9

Keywords

Navigation