Skip to main content
Log in

Synthesis of cage [4.4.2]propellanes and \({D_{3}}\)-trishomocubanes bearing spiro linkage

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The synthesis of substituted cage [4.4.2]propellanes and \(D_{3}\)-trishomocubanes bearing spiro linkage have been assembled with the aid of Diels–Alder reaction and ring-rearrangement as key steps. Here, readily available 1,4-hydroquinone, isoprene, spiro[2.4]hepta-4,6-diene and spiro[4.4]nona-1,3-diene were used as starting materials. The unusual rearrangement of cage propellanes with zinc/acetic acid produced \(D_{3}\)-trishomocubanes in good yields.

Graphical Abstract

Several cage [4.4.2]propellanes and \(D_{3}\)-trishomocubanes have been assembled by Diels–Alder reaction (DA), [2+2] photocycloaddition, and acid-promoted rearrangement. Ring-rearrangement was observed in cage [4.4.2]propellane framework during the acid catalyzed reaction. Rearrangement approach provide new opportunities to construct unusual polycycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. For selected reviews and monographs on cage molecules, see: (a) Osawa E and Yonemitsu O 1992 Carbocyclic Cage Compounds (New York: VCH); (b) Hopf H 2000 Classics in Hydrocarbon Chemistry (Weinheim: Wiley-VCH); (c) Biegasiewicz K F, Griffiths J R, Savage G P, Tsanaktsidis J and Priefer R 2015 Cubane: 50 Years Later Chem. Rev. 115 6719; (d) Levandovskiy I A, Sharapa D I, Cherenkova O A, Gaidai A V and Shubina T E 2010 The chemistry of \(D_{3}\)-trishomocubane Russ. Chem. Rev. 79 1005; (e) Mehta G and Rao H S P 1987 Synthetic Studies Directed Towards Bucky-Balls and Bucky Bowls Tetrahedron 54 13325

  2. (a) Eaton P E 1992 Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century Angew. Chem. Int. Edit. 31 1421; (b) Eaton P E, Zhang M-X, Gilardi R, Gelber N, Iyer S and Surapaneni R 2002 Octanitrocubnae: A New Nitrocarbon Propellants Explos. Pyrotech. 27 1; (c) Marchand A P, Sharma, G V M, Annapurna G S and Pednekar P R 1987 Pentacyclo[\(5.4.0.0^{2,6}.0^{3,10}.0^{5,9}\)]undecane-4, 8, 11-trione, Pentacyclo[\(6.3.0.0^{2,6}.0^{3,10}.0^{5,9}\)]undecane -4, 7, 11-trione (\(D_{3}\)-trishomocubanetrione), and 4, 4, 7, 7, 11, 11-Hexanitro[\(6.3.0.0^{2,6}.0^{3,10}.0^{5,9}\)]undecane (\(D_{3}\)-Hexanitrotrishomocubane) J. Org. Chem. 52 4784

  3. (a) Marchand A P, Suri S C, Earlywine A D, Powel D R and Vander Helm D 1984 Synthesis of methyl-and nitro-substituted pentacyclo[\(5.4.0.0^{2,6}.0^{3,10}.0^{5,9}\)]undecane-8,11-diones J. Org. Chem. 49 670; (b) Fessner W D, Sedelmeier G, Spurr P R, Rihs G and Prinzbach H 1987 “Pagodane”: The Efficient Synthesis of a Novel, Versatile Molecular Framework J. Am. Chem. Soc. 109 4626; (c) Mehta G, Srikrishna A, Reddy A V and Nair M S 1981 A Novel, Versatile Synthetic Approach to Linearly Fused Tricyclopentanoids via Photo-thermal olefin metathesis Tetrahedron 37 4543; (d) Mehta G and Rao H S P 1987 The Trioxa[5]-peristylane System J Chem. Soc. Chem. Commun. 476

  4. (a) Geldenhuys W J, Malan S F, Bloomquist J R, Marchand A P and Van Der Schyf C J 2005 Pharmacology and Structure-Activity Relationships of Bioactive Polycyclic Cage Compounds: A Focus on Pentacycloundecane Derivatives Med. Res. Rev. 25 21; (b) Sklyarova A S, Rodionov V N, Parsons C G, Quack G, Schreiner P R and Fokin A A 2013 Preparation and testing of homocubyl amines as therapeutic NMDA receptor antagonists Med. Chem. Res. 22 360; (c) Chalmers B A, Xing, Housten S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray C E P, Stock J E, Boyle, G M, Pierce, C J, Littler, S W, Winkler D A, Bernhardt P V, Pasay C. J, De Voss J, McCarthy J, Parsons P G, Walter G H, Smith M T, Cooper H M, Nilsson S K, Tsanaktsidis J, Savage G P and Williams C M 2016 Validating Eaton’s Hypothesis: Cubane as a Benzene Bioisostere Angew. Chem. Int. Edit. 55 3580

  5. (a) Paquette L A 1984 In Strategies and Tactics of Organic synthesis T Lindberg (Ed.) (New York: Academic Press) p.175; (b) Marchand A P 1989 In Advances in Theoretically Interesting Molecules R P Thummel (Ed.) (Greenwich, CT: JAI Press) Ch. 1 p. 357

  6. (a) Griesbeck A G, Deufel T, Hohlneicher G, Rebentisch R and Steinwascher J 1998 Synthesis, Structure, and Properties of Twofold Bridged Sesquinorbornenes Eur. J. Org. Chem. 1759; (b) Mlinaric-Majerski K, Veljkovic J, Marchand A P and Ganguly B 1998 Thermodynamic Rearrangement of the Pentacyclo[\(5.4.0.0^{2,6}.0^{3,10}.0^{5,9}\)]undecane Skeleton Tetrahedron 54 11381; (c) Sharapa D I, Gayday A V, Mitlenko A G, Levandovskiy I A and Shubina T E 2011 A Convenient Road to 1-Chloropentacycloundecanes – A Joint Experimental and Computational Investigation Eur. J. Org. Chem. 13 2554

  7. (a) Mehta G, Srikrishna A, Rao K S, Reddy K R, Acharya K A, Puranik V G, Tavale S S and Guru Row T N 1987 Novel Polyquinanes from a Caged Hexacyclic [4.4.2]Propellane System J. Org. Chem. 52 457; (b) Mehta G and Rao K S 1985 Reductive carbon–carbon cleavage in caged systems. A new general synthesis of linearly fused cis-syn-cis-triquinanes J. Org. Chem. 50 5537; (c) Pecchioli T and Christmann M 2018 Synthesis of Highly Enantioenriched Propelladienes and their Application as Ligands in Asymmetric Rh-Catalyzed 1,4-additions Org. Lett. 20 5256; (d) Dilmaç A M, Spuling E, de Meijere A and Bräse S 2017 Propellanes – From a Chemical Curiosity to “Explosive” Materials and Natural Products Angew. Chem. Int. Edit. 56 5684; (e) Schneider L M, Schmiedel V M, Pecchioli T, Lentz D, Merten T and Christmann M 2017 Asymmetric Synthesis of Carbocyclic Propellanes 19 2310; (f) Majerski Z, Veljkovic J and Kaselj M 1988 1,7-Methanohomopentaprismane.A [2.2.1] propellane 53 2662

  8. (a) Chow T J and Wu T K 1991 Chemistry of cage-shaped polyquinane derivatives. The reaction of 14-iodohexacyclo[\(6.6.0.0^{2,6}.0^{3,13}.0^{4,11}.0^{5,9}\)]tetradecan-10-one in basic solution J. Org. Chem. 56 6833; (b) Nair M S, Sudhir U, Joly S and Rath N P 1999 Two Fascinating Rearrangements Through Selective Placement of Bromine Substituents. Photochemical Synthesis of 3-Bromo-7-(bromomethyl) tetracyclo[\(5.3.1.0^{2,6}.0^{4,8}\)]undec-10(12)-ene-9,11-dione and its Rearrangement with Amines Tetrahedron 55 7653; (c) Marchand A P, Rajapaksa D, Reddy S P, Watson W H and Nagl A 1989 Tieffeneau-Demjanov ring homologations of two pentacyclo[\(5.4.0.0^{2,6}.0^{3,10}.0^{5,9}\)]undecane-8, 11-diones J. Org. Chem. 54 5086; (d) Marchand, A P, Chong H S, Shukla R, Sharma G V M, Kumar K A, Zope U R and Bott S G 1996 Acid and Base Promoted Rearrangements of Hexacyclo[\(11.2.1.0^{2,12}.0^{5,10}.0.^{5,15,}.0^{10,14}\)]hexadeca-6,8-diene-4,11-dione Tetrahedron 52 13531

  9. (a) Kotha S and Dipak M K 2006 Design and Synthesis of Novel Propellanes by Using Claisen Rearrangement and Ring-Closing Metathesis as the Key Steps Chem. Eur. J. 12 4446; (b) Kotha S, Cheekatla S R, Chinnam A K and Jain T 2016 Design and synthesis of polycyclic bisindoles via Fisher indolization and ring-closing metathesis as key steps Tetrahedron Lett. 57 5605; (c) Kotha S and Cheekatla S R 2017 A New Synthetic Approach to \(C_{2}\)-Symmetric Octacyclic Cage Diol via Claisen Rearrangement and Ring-Closing Metathesis as the Key Steps Chem. Select 2 6877; (d) Kotha S, Manivannan E and Sreenivasachary N 1999 Allylation of caged diketones via fragmentation methodology J. Chem. Soc. Perkin Trans. 1 2845; (e) Kotha S, Seema V, Singh K and Deodhar K D 2010 Strategic utilization of catalytic metathesis and photo-thermal metathesis in caged polycyclic frames Tetrahedron Lett. 51 2301

  10. (a) Kotha S, Cheekatla S R and Mandal B 2017 Synthesis and Rearrangement of Cage [4.3.2]propellanes that Contain a Spiro Linkage Eur. J. Org. Chem. 4277; (b) Kotha S and Cheekatla S R 2018 Molecular acrobatics in polycyclic frames: Synthesis of functionalized \(D_{3}\)-Trishomocubanes via rearrangement approach J. Org. Chem. 83 6315

  11. (a) Lagoja I M and De clercq E 2008 Anti-influenza virus agents: Synthesis and mode of action Med. Res. Rev. 28 1; (b) Lal S, Mallick L, Rajkumar S, Ommen, O P, Reshmi S, Kumbhakarna N, Chowdhury A and Namboothiri I N N 2015 Synthesis and energetic properties of high-nitrogen substituted bishomocubanes J. Mater. Chem. A 3 22118; (c) Lim H N and Dong G 2016 Catalytic Cage formation via Controlled Dimerization of Norbornadienes: An Entry to Functionalized HCTDs (Heptacyclo[\(6.6.0.0^{2,6}.0^{3,13}.0^{4,11}.0^{5,9}.0^{10,14}\)]tetradecanes) Org. Lett. 18 1104; (d) de Meijere A, Redlich S, Frank D, Magull J, Hofmeister A, Menzel H, Konig B and Svoboda J 2007 Octacyclopropylcubane and Some of Its Isomers Angew. Chem. Int. Edit. 46 4574; (e) Wilkinson S M, Gunosewoyo H, Barron M L, Boucher A, McDonnell M, Turner P, Morrison D E, Bennett M R, McGregor I S, Rendina L M and Kassiou M 2014 The First CNS-Active Carborane: A Novel \(\text{P}_{2}\text{ X }_{7}\) Receptor Antagonist with Antidepressant Activity ACS Chem. Neurosci. 5 335; (f) Kotha S, Cheekatla S R and Mhatre D S 2017 Ring-Closing Metathesis Approach to Cage Propellanes Containing Oxepane and Tetrahydrofuran Hybrid System Synthesis 49 5339

  12. (a) Kotha S and Manivannan E 2002 Synthesis of functionalized cis-syn-cis triquinanes Indian J. Chem. Sect. B 41 808; (b) Dekker J, Dekker J J, Fourie L and Martins F J C 1976 J. S. African Chem. Inst. 29 114

  13. Mashraqui S and Keehn P 1982 Active MnO2: Oxidative Dehydrogenations Synth. Commun. 12 637

    Article  CAS  Google Scholar 

  14. (a) Amor F, Royo P, Spaniol T P and Okuda J 2000 Chelated \(\upeta ^{5}\)-cyclopentadienyl-\(\upeta \)-ethyl complexes of molybdenum and tungsten; molecular structure of \(\text{ W }(\upeta ^{5}-\text{ C }_{5}\text{ H }_{4}\text{ CH }_{2}-\upeta -\text{ CH }_{2})(\text{ CO })_{3}\) J. Organomet. Chem. 604 126; (b) Green M L H and O’Hare D 1985 Studies on cyclic bis (\(\upeta 5\): \(\upsigma \)-2-cyclopentadienylidene-ethyl)- and bis(\(\upeta ^{5}\): \(\upsigma \)-4-cyclopentadienylidenebutyl)-molybdenum compounds J. Chem. Soc. Dalton Trans. 1585

  15. (a) Kotha S, Chavan A S and Goyal D 2015 Diversity-Oriented Approaches to Polycyclics and Bioinspired Molecules via the Diels–Alder Strategy: Green Chemistry, Synthetic Economy, and Beyond ACS Comb. Sci. 17 253; (b) Nicolaou K C, Snyder S A, Montagnon T and Vassilikogiannakis G 2002 The Diels–Alder Reaction in Total Synthesis Angew. Chem. Int. Edit. 41 1668

  16. Poplata S, Tröster A, Zou Y-Q and Bach T 2016 Recent Advances in the Synthesis of Cyclobutanes by Olefin [2+2] Photocycloaddition Reactions Chem. Rev. 116 9748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Defence Research and Development Organisation (DRDO, NO. ARDB/01/1041849/M/1), New Delhi, for financial assistance and gratefully acknowledge Praj Industries for Pramod Chaudhari Chair Professorship (Green Chemistry). S. K. thanks the Department of Science and Technology (DST, NO. SR/S2/JCB-33/2010) for the award of a J. C. Bose fellowship and S. R. C. thanks University Grants Commission (UGC), New Delhi for the award of a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambasivarao Kotha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2910 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotha, S., Cheekatla, S.R. Synthesis of cage [4.4.2]propellanes and \({D_{3}}\)-trishomocubanes bearing spiro linkage. J Chem Sci 130, 171 (2018). https://doi.org/10.1007/s12039-018-1569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1569-2

Keywords

Navigation