Skip to main content

Advertisement

Log in

Anti-proliferative activity, molecular modeling studies and interaction with calf thymus DNA of novel ciprofloxacin analogues

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In our pursuit to expand new potential anticancer leads, a series of eighteen novel 1-cyclopropyl-6-fluoro-4-oxo-7-(4-substituted piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid analogues have been synthesized, characterized and evaluated anti-proliferative activity against five human cancer cell lines such as A549 (lung cancer), Mia Paca (pancreatic cancer), HeLa (cervical cancer), MDA MB-231 (breast cancer), MCF-7 (breast cancer) and normal embryonic kidney cell line (HEK) were carried out using MTT assay. Few of the synthesized analogues exhibited potent anticancer activity against the cancer cell lines at a lower concentration. The synthesized compounds showed the less toxic effect on normal human embryonic kidney cell line (HEK) compared with doxorubicin. Noticeably, compound 3o exhibited potent activity against all five cancer cell lines compared with ciprofloxacin. Further study exposed that compound 3o could competently intercalate into calf thymus DNA to form 3o-DNA complex which might block DNA replication to apply anti-proliferative activity. Docking simulation studies supported by molecular interactions with DNA type II topoisomerase. These derivates can become lead structures for the development of potential anticancer drugs.

Graphical Abstract

Eighteen CP analogues were synthesized and evaluated for anti-proliferative activity. The interactions with DNA topoisomerase II were supported by molecular docking studies. 3o showed promising anticancer activity than CP against MCF7 cell line and interaction with calf thymus DNA was studied by fluorescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Cancer Facts and Figures. American Cancer Society, 2012

  2. Yamakuchi M, Nakata M, Kawahara K, Kitajima I and Maruyama T 1997 New quinolones, ofloxacin and levofloxacin, inhibit telomerase activity in transitional-cell carcinoma cell-lines Cancer Lett. 119 213

    Article  CAS  PubMed  Google Scholar 

  3. Azema J, Guidetti B, Dewelle J, Le Calve B, Mijatovic T, Korolyov A, Vaysse J, Martino M M, Martino R and Kiss R 2009 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: Synthesis and in vitro biological evaluation as potential antitumor agents Bioorg. Med. Chem. 17 5396

    Article  CAS  PubMed  Google Scholar 

  4. El-Rayes B F, Grignon R, Aslam N, Aranha O and Sarkar F H 2002 Ciprofloxacin inhibits cell growth and synergises the effect of etoposide in hormone resistant prostate cancer cells Int. J. Oncol. 21 207

    CAS  PubMed  Google Scholar 

  5. Ebisuno S, Inagaki T, Kohjimoto Y and Ohkawa T 1997 The cytotoxic effect of fleroxacin and ciprofloxacin on transitional cell carcinoma in vitro Cancer 15 2263

    Article  Google Scholar 

  6. Herold C, Ocker M, Ganslmayer M, Gerauer H, Hahn E G and Schuppan D 2002 Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells Br. J. Cancer 86 443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaharyar M, Ashraf Ali M and Abdullah M M 2007 Synthesis and antiproliferative activity of 1-[(sub)]-6-fluoro-3-[(sub)]-1,3,4-oxadiazole-2-yl-7-piperazino-1,4-dihydro-4-quinolinone derivatives Med. Chem. Res. 16 292

    Article  CAS  Google Scholar 

  8. Kozeil R, Szczepanoswska J, Magalska A, Piwocka K, Duszynski J and Zablock K 2010 Ciprofloxacin inhibits proliferation and promotes generation of aneuploidy in Jurkat cells J. Physiol. Pharmacol. 61 233

    Google Scholar 

  9. Mondal E R, Das S K and Mukherjee P 2004 Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones with a human non-small cell lung cancer cell line in culture Asian Pac. J. Cancer Prev. 5 196

    CAS  PubMed  Google Scholar 

  10. Kloskowski T, Gurtowska N, Olkowska J, Marcin Nowak J, Adamowicz J, Tworkiewicz J, Debski R, Grzanka A and Drewa T 2012 Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC Int. J. Oncol. 41 1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kloskowski T, Olkowska J, Nazlica A and Drewa T 2010 The influence of ciprofloxacin on hamster ovarian cancer cell line CHO AA8 Acta Pol. Pharm. 67 345

    CAS  PubMed  Google Scholar 

  12. Esmaeilzadeh A, Ebtekar M, Biglar A and Mohammad Hassan Z 2012 Influence of ciprofloxacin on glioma cell line GL26: A new application for an old antibiotic Afr. J. Microbiol. Res. 6 4891

    CAS  Google Scholar 

  13. Aranha O, Wood Jr D P and Sarkar F H 2000 Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line Clin. Cancer. Res. 6 891

    CAS  PubMed  Google Scholar 

  14. Kloskowski T, Gurtowska N, Nowak M, Joachimiak R, Bajek A, Olkowska J and Drewa T 2011 The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro Acta Pol. Pharm. 68 859

    Article  CAS  PubMed  Google Scholar 

  15. Yogeeswari P, Sriram D, Kavya R and Tiwari S 2005 Synthesis and in-vitro cytotoxicity evaluation of gatifloxacin Mannich bases Biomed. Pharmacother. 59 501

    Article  CAS  PubMed  Google Scholar 

  16. Nieto M J, Alovero F L, Manzo R H and Mazzieri M R 2005 Benzenesulfonamide analogs of fluoroquinolones. Antibacterial activity and QSAR studies Eur. J. Med. Chem. 40 361

    Article  CAS  PubMed  Google Scholar 

  17. Gootz T D, Mcguirk P R, Moynihan M S and Haskell S L 1994 Placement of alkyl substituents on the C-7 piperazine ring of fluoroquinolones: dramatic differential effects on mammalian topoisomerase II and DNA gyrase Antimicrob. Agents Chemother. 38 130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alovero F L, Pan X S, Morris J E, Manzo R H and Fisher L M 2000 Engineering the Specificity of Antibacterial Fluoroquinolones: Benzenesulfonamide Modifications at C-7 of Ciprofloxacin Change Its Primary Target in Streptococcus pneumoniae from Topoisomerase IV to Gyrase Antimicrob. Agents Chemother. 44 320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robinson M J, Martin B A, Gootz T D, Mcguirk P R and Osheroff N 1992 Effects of novel fluoroquinolones on the catalytic activities of eukaryotic topoisomerase II: Influence of the C-8 fluorine group Antimicrob. Agents Chemother. 36 751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng Q, Kwok Y, Kerwin S M, Mangold G and Hurley L H 1998 Design of new topoisomerase II inhibitors based upon a quinobenzoxazine self-assembly model J. Med. Chem. 41 4273

    Article  CAS  PubMed  Google Scholar 

  21. Kim M Y, Na Y, Vankayalapati H, Guzman M G and Hurley L H 2003 Design, Synthesis, and Evaluation of Psorospermin/Quinobenzoxazine Hybrids as Structurally Novel Antitumor Agents J. Med. Chem. 46 2958

    Article  CAS  PubMed  Google Scholar 

  22. Kim M Y, Duan W, Gleason G M and Hurley L H 2003 Design, Synthesis, and Biological Evaluation of a Series of Fluoroquinoanthroxazines with Contrasting Dual Mechanisms of Action against Topoisomerase II and G-Quadruplexes J. Med. Chem. 46 571

    Article  CAS  PubMed  Google Scholar 

  23. Teicher B A 2008 Next generation topoisomerase I inhibitors: Rationale and biomarker strategies Biochem. Pharmacol. 75 1262

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez-Martin R, Campos J M, Conejo-Garcia A, Cruz-Lopez O, Banez-Coronel M, Rodriguez-Gonzalez A, Gallo M A, Lacal J C and Espinosa A 2005 Symmetrical bis-quinolinium compounds: new human choline kinase inhibitors with antiproliferative activity against the HT-29 cell line J. Med. Chem. 48 3354

    Article  CAS  PubMed  Google Scholar 

  25. Suresh N, Nagesh H N, Chandra Sekhar K V G, Kumar A, Shirazi A N and Parang K 2013 Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines Bioorg. Med. Chem. Lett. 23 6292

    Article  CAS  PubMed  Google Scholar 

  26. Pigeon P, Top S, Zekri O, Hillard E A, Vessieres A, Plamont M A, Buriez O, Labbe E, Huche M, Boutamine S, Amatore C and Jaouen G 2009 The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1, 1-diphenyl-but-l-ene compounds against breast cancer cells J. Organomet. Chem. 694 895

    Article  CAS  Google Scholar 

  27. Ma L, Xie C, Ma Y, Liu J, Xiang M, Ye X, Zheng H, Chen Z, Xu Q, Chen T, Chen J, Yang J, Qiu N, Wang G, Liang X, Peng A, Yang S, Wei Y and Chen L 2011 Synthesis and Biological Evaluation of Novel 5-Benzylidenethiazolidine-2,4-dione Derivatives for the Treatment of Inflammatory Diseases J. Med. Chem. 54 2060

    Article  CAS  PubMed  Google Scholar 

  28. Upadhyaya R S, Vanadavasi J K, Vasireddy N R, Sharma V, Dixit S S and Chattopadhyaya J 2009 Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis Bioorg. Med. Chem. 17 2830

    Article  CAS  Google Scholar 

  29. Fukuda R, Takenaka S and Takagi M 1990 Metal ion assisted DNA-intercalation of crown ether-linked acridine derivatives J. Chem. Soc. Chem. Commun. 151028

    Article  Google Scholar 

  30. Kapuscinski J and Darzynkiewicz Z 1985 Interactions of antitumor agents ametantrone and mitoxantrone (novatrone) with double-stranded DNA Biochem. Pharmacol. 34 4203

    Article  CAS  PubMed  Google Scholar 

  31. Dang X J, Nie M Y, Tong J and Li H L 1998 Inclusion of the parent molecules of some drugs with \(\beta \)-cyclodextrin studied by electrochemical and spectrometric methods J. Electroanal. Chem. 448 61

    Article  CAS  Google Scholar 

  32. Li N, Ma Y, Yang C, Guo L and Yang X R 2005 Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods Biophys. Chem. 116 199

    Article  CAS  PubMed  Google Scholar 

  33. Mondal B, Sen B, Sarkar S, Zangrando E and Chattopadhyay P 2017 Synthesis, characterization, crystal structure and DNA-binding study of four cadmium(II) pyridine-carboxamide complexes J. Chem. Sci. 129 45

    Article  CAS  Google Scholar 

  34. Perumal G, Jayaram R and Aziz K R 2014 Mixed-ligand binuclear copper (II) complex of 5-methylsalicylaldehyde and 2,2\(^{\prime }\)-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity J. Chem. Sci. 126 783

    Article  CAS  Google Scholar 

  35. Sastri C V, Eswaramoorthy D, Giribabu L and Bhaskar G M 2003 DNA interactions of new mixed-ligand complexes of cobalt(III) and nickel(II) that incorporate modified phenanthroline Ligands J. Inorg. Biochem. 94 138

    Article  CAS  PubMed  Google Scholar 

  36. Zhu T, Wang Y, Ding W, Xu J, Chen R, Xie J, Zhu W, Jia L and Ma T 2015 Anticancer Activity and DNA-Binding Investigations of the Cu(II) and Ni(II) Complexes with Coumarin Derivative Chem. Bio. Drug. Design 85 385

    Article  CAS  Google Scholar 

  37. Baguley B C and Le Bret M 1984 Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect Biochemistry 23 937

    Article  CAS  PubMed  Google Scholar 

  38. Chitrapriya N, Sathiya Kamatchi T, Zeller M, Lee H and Natarajan K 2011 Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide Spectrochim. Acta Part A 81 128

    Article  CAS  Google Scholar 

  39. Lakowicz J R and Webber G 1973 Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules Biochemistry 12 4161

    Article  CAS  PubMed  Google Scholar 

  40. Imrich J, Sabolova D, Vilkova M and Cova J K 2016 Unexpected regiospecific formation and DNA binding of new 3-(acridin-9-yl)methyl-2-iminothiazolidin-4-ones J. Chem. Sci. 128 269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere thanks to the Department of Biotechnology (No.BT/PR4801/MED/29/370/2012), Government of India, New Delhi for funding the project. The author NS thanks UGC, New Delhi for the award of senior research fellowship; we also thank Devendar for maintaining cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kondapalli Venkata Gowri Chandra Sekhar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1572 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, N., Suresh, A., Yerramsetty, S. et al. Anti-proliferative activity, molecular modeling studies and interaction with calf thymus DNA of novel ciprofloxacin analogues. J Chem Sci 130, 121 (2018). https://doi.org/10.1007/s12039-018-1528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1528-y

Keywords

Navigation