Skip to main content
Log in

Influence of position of methoxy groups in Zn-methoxyphenylporphyrins

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The crystal structure of the compound, Zn(II) 5,10,15,20-tetrakis(meta-methoxyphenyl)porphyrin chloroform trisolvate, \([\hbox {ZnT}(m\hbox {-OCH}_{3})\hbox {PP}]{\cdot } 3\hbox {CHCl}_{3}\) 1 reveals that it forms a weak one-dimensional chain structure through interaction between Zn of porphyrin and the oxygen atom of the methoxy group of a neighbouring porphyrin. The zinc–oxygen interaction observed in compound 1 is compared with Zn(II) 5,10,15,20-tetrakis(para-methoxyphenyl)porphyrin \([\hbox {ZnT}(p\hbox {-OCH}_{3})\hbox {PP}]\) 2 and Zn(II) 5,10,15,20-tetrakis(3,4,5-tri-methoxyphenyl)porphyrin \([\hbox {ZnT}(3,4,5\hbox {-triOCH}_{3})\hbox {PP}]\) 3 to understand the preferred methoxy-position of interaction. The strength of the non-covalent zinc–oxygen (methoxy group of a neighboring porphyrin) interaction in compound 1 is in between that of similar interactions observed in compounds 2 and 3. The Mulliken charge analysis using theoretical calculation at the DFT level shows that the meta-methoxy oxygen has a higher probability of binding to the metal than the para-methoxy oxygen. In the presence of nucleophiles, the formation of one-dimensional chain structure stops due to the binding of the nucleophiles to the metal zinc. The photoluminescence and differential scanning calorimetric studies were also performed for compound 1.

Graphical Abstract

SYNOPSIS A zinc porphyrin \([\hbox {ZnT}(m\hbox {-OCH}_{3})\hbox {PP}]{\cdot } 3\hbox {CHCl}_{3}\) 1 has been synthesized and structurally characterized using single crystal X-ray diffraction and other spectroscopic methods. The crystal structure of 1 shows a weak interaction between Zn of porphyrin and the oxygen atom of the methoxy group of a neighbouring porphyrin. The Zn-oxygen interaction observed in compound 1 is compared with Zn-oxygen interaction present in other methoxy-substituted porphyrins \([\hbox {ZnT}(p\hbox {-OCH}_{3})\hbox {PP}]\) 2 and [ZnT(3,4, 5-\(\hbox {triOCH}_{3})\hbox {PP}\)] 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huaping L, Bing Z, Yi L, Lingrong G, Wei W, Fernando K A S, Kumar S, Lawrence F A and Sun Y P 2004 Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes J. Am. Chem. Soc126 1014

    Article  CAS  Google Scholar 

  2. Urbanova M, Setnic V, Kral V and Volka K 2001 Noncovalent interactions of peptides with porphyrins in aqueous solution: conformational study using vibrational CD spectroscopy J. Pept. Sci.  60 307

    Article  CAS  Google Scholar 

  3. Murakami H, Nomura T and Nakashima N 2003 Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites Chem. Phys. Lett. 378 481

    CAS  Google Scholar 

  4. Cheng F, Zhang S, Adronov A, Echegoyen L and Diederich F 2006 Triply fused \(\text{ Zn }^{II}\)–porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (swnts) Chem. Eur. J. 12 6062

    Article  CAS  PubMed  Google Scholar 

  5. Titi H M, Tripuramallu B K and Goldberg I 2016 Porphyrin-based assemblies directed by non-covalent interactions highlights of recent investigations CrystEngComm 18 3318

    Article  CAS  Google Scholar 

  6. Stangel C, Charisiadis A, Zervaki G E, Nikolaou V, Charalambidis G, Kahnt A, Rotas G, Tagmatarchis N and Coutsolelos G A 2017 A case study for artificial photosynthesis: non-covalent interactions between \({\rm C}_{60}\) dipyridyl and zinc porphyrin dimer J. Phys. Chem. 121 4850

    Article  CAS  Google Scholar 

  7. Borah K D and Bhuyan J 2017 Magnesium porphyrins with relevance to chlorophylls Dalton Trans. 46 6497

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi T and Ogoshi H 1997 Molecular modelling of electron transfer systems by noncovalently linked porphyrin–acceptor pairing Chem. Soc. Rev.  26 355

    Article  CAS  Google Scholar 

  9. Lang K, Mosinger J and Wagnerov D M 2004 Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy Coord. Chem. Rev. 2 48 321

    Article  CAS  Google Scholar 

  10. Bhuyan J and Sarkar S 2012 Nitrous acid mediated synthesis of iron-nitrosyl-porphyrin: pH-dependent release of nitric oxide Chem. Asian J. 7 2690

    Article  CAS  PubMed  Google Scholar 

  11. Batten S R, Champness N R, Chen X, Martinez J G, Kitagawa S, Ohrstrom L, O’Keeffe M, Suhh M P and Reedijk J 2012 Coordination polymers, metal–organic frameworks and the need for terminology guidelines CrystEngComm 14 3001

    Article  CAS  Google Scholar 

  12. Huh S, Kim S J and Kim Y 2016 Porphyrinic metal-organic frameworks from custom-designed Porphyrins CrystEngComm 18 345

    Article  CAS  Google Scholar 

  13. Gao W Y, Chrzanowski M and Ma S 2014 Metal–metalloporphyrin frameworks: a resurging class of functional materials Chem. Soc. Rev. 43 5841

    Article  CAS  PubMed  Google Scholar 

  14. Lipstman S and Goldberg I 2010 Porphyrin framework solids. Hybrid supramolecular assembly modes of tetrapyridylporphyrin and aqua nitrates of lanthanoid ions Cryst.Growth Des. 10 1823

    Article  CAS  Google Scholar 

  15. Johnson J A, Lin Q, Wu L C, Obaidi N, Olson Z L, Reeson R T, Chen Y S and Zhang J 2013 A “pillar-free”, highly porous metalloporphyrinic framework exhibiting eclipsed porphyrin arrays Chem. Comm. 49 2828

    Article  CAS  PubMed  Google Scholar 

  16. Sun W, Wang H, Qi D, Wang L, Wang K, Kan J, Li W, Chen Y and Jiang J 2012 5,10,15,20-tetra(4-pyridyl)porphyrinato zinc coordination polymeric particles with different shapes and luminescent properties CrystEngComm 14 7780

    Article  CAS  Google Scholar 

  17. Krupitsky H, Stein Z and Goldberg I 1994 Crystalline complexes, coordination polymers and aggregation modes of tetra(4-pyridyl)porphyrin J. Incl. Phenom. Macrocycl. Chem. 18 177

    Article  CAS  Google Scholar 

  18. Shmilovits M, Vinodu M and Goldberg I 2004 Coordination polymers of tetra(4 carboxyphenyl)porphyrins sustained by tetrahedral zinc ion linkers Cryst. Growth Des. 4 633

    Article  CAS  Google Scholar 

  19. Teo T L, Vetrichelvan M and Lai Y H 2003 Infinite three-dimensional polymeric metalloporphyrin network via six-coordinate Zn(II) and two axial oxygen donors Org. Lett. 5 4207

    Article  CAS  PubMed  Google Scholar 

  20. Ikbal S, Brahma S, Dhamija A and Rath S P 2014 Building-up novel coordination polymer with Zn(II) porphyrin dimer: Synthesis, structures, surface morphology and effect of axial ligands J. Chem. Sci. 126 1451

    Article  CAS  Google Scholar 

  21. Bhuyan J and Sarkar S 2011 Self-assembly of magnesium and zinc trimethoxyphenylporphyrin polymer as nanospheres and nanorods Cryst. Growth Des. 11 5410

    Article  CAS  Google Scholar 

  22. Saleh R Y and Straub D K 1989 13C NMR spectra of tetra(3,4,5-trimethoxyphenyl)porphyrin and its zinc and iron(III) complexes Inorg. Chim. Acta 156 9

    Article  CAS  Google Scholar 

  23. McGill S, Nesterov V N and Gould S L 2013 [5,10,15,20-Tetra-kis(4-methoxyphenyl)porphyrinato]zinc dichloro-methane disolvate Acta Cryst. 69 m471

    Article  CAS  PubMed Central  Google Scholar 

  24. Okada S and Segawa H 2003 Substituent-control exciton in j-aggregates of protonated water-insoluble porphyrins J. Am. Chem. Soc125 2792

    Article  CAS  PubMed  Google Scholar 

  25. Wei X, Du X, Chen D and Chen Z 2006 Thermal analysis study of 5,10,15,20-tetrakis (methoxyphenyl)porphyrins and their nickel complexes Thermochim. Acta 440181

    Article  CAS  Google Scholar 

  26. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 Complete structure solution, refinement and analysis program J. Appl. Cryst. 42 339

    Article  CAS  Google Scholar 

  27. Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assour J and Korsakoff L 1967 A simplified synthesis for meso-tetraphenylporphine J. Org. Chem. 32 476

    Article  CAS  Google Scholar 

  28. Goldberg I, Krupitsky H, Stein Z, Hsiou Y and Strouse E C 1994 Supramolecular architectures of functionalized tetraphenylmetalloporphyrins in crystalline solids. Studies of the 4-methoxyphenyl, 4-hydroxyphenyl and 4-chlorophenyl derivatives Supramol. Chem. 4203

    Article  CAS  Google Scholar 

  29. Barnnet G H, Hudson M F and Smith K M 1975 Concerning meso-tetraphenylporphyrin purification J. Chem. Soc. 14 1401

    Google Scholar 

  30. Gouterman M 1961 Spectra of Porphyrins J. Mol. Spectrosc6 138

    Article  CAS  Google Scholar 

  31. Zaitzeva S V, Zdanovich S A, Ageeva T A, Ocheretovi A S and Golubchikov O A 2000 Influence of the nature of porphyrin and extraligand on the stability of zinc extracomplexes Molecules 5 786

    Article  CAS  Google Scholar 

  32. Favereau L, Cnossen A, Kelber J B, Gong J Q, Oetterli R M, Cremers J, Herz L M and Anderson H L 2015 Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings J. Am. Chem. Soc137 14256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Peng U, Zhang C, Li Y and Liu C 2016 Synthesis of zinc porphyrn and effect of peripheral substituent on the coordination reaction Indian J. Chem. 55 145

    Google Scholar 

  34. Bhuyan J 2016 Nucleophilic ring-opening of iron(III)-hydroxyisoporphyrin Dalton Trans. 45 2694

    Article  CAS  PubMed  Google Scholar 

  35. Tumer M, Gungor S A and Çiftaslan A R 2016 Solid state and solution photoluminescence properties of a novel meso-meso-linked porphyrin dimer schiff base ligand and its metal complexes J. Lumin. 170 108

    Article  CAS  Google Scholar 

  36. Boucher L J and Katz J J 1967 The infared spectra of metalloporphyrins (4000–160 \(\text{ cm }^{-1})\) J. Am. Chem. Soc. 89 1340

    Article  CAS  PubMed  Google Scholar 

  37. Filip A G, Clichici S, Daicoviciu D, Ion R M, Tatomir C, Rogojan L, Opris I, Mocan T, Olteanu D and Muresan A 2011 Possible in vivo mechanisms involved in photodynamic therapy using tetrapyrrolic macrocycles Braz. J. Med. Biol. Res. 44 53

    Article  CAS  Google Scholar 

  38. Takashima H, Fujimoto E, Hirai C and Tsukahara K 2008 Synthesis and spectroscopic properties of reconstituted zinc-myoglobin appending a DNA-binding platinum(II) complex Chem. Biodivers. 5 2101

    CAS  Google Scholar 

  39. Borah K D, Singh N G and Bhuyan J 2017 Magnesium trimethoxyphenylporphyrin chain controls energy dissipation in the presence of cholesterol J. Chem. Sci. 129 449

    Article  CAS  Google Scholar 

  40. Guan C, Li I, Chen D, Gao Z and Sun W 2002 Thermal behavior and thermal decomposition study of porphyrin polymers containing different spacer groups Thermochim. Acta 413 31

    Article  CAS  Google Scholar 

  41. Medforth C J, Haddad R E, Muzzi C M, Dooley N R, Jaquinod L, Shyr D C, Nurco D J, Olmstead M M, Smith K M, Ma J G and Shelnutt J A 2003 Unusual aryl-porphyrin rotational barriers in peripherally crowded porphyrins Inorg. Chem42 2227

    Article  CAS  PubMed  Google Scholar 

  42. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B,Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J,Gomperts R, Stratmann R E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, RabuckA D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A Gaussian 03 (Revision B.05), Gaussian 03, Revision B.04, Gaussian Inc., Pittsburgh, P A, 2003

Download references

Acknowledgements

JB acknowledges SERB, DST, New Delhi for funding (YSS/2015/000394). Authors thank Dr. Md. Harunar Rashid, Department of Chemistry, Rajiv Gandhi University, Itanagar for allowing to use the fluorescence spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagannath Bhuyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, B.P., Bhuyan, J. Influence of position of methoxy groups in Zn-methoxyphenylporphyrins. J Chem Sci 130, 117 (2018). https://doi.org/10.1007/s12039-018-1516-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1516-2

Keywords

Navigation