Skip to main content
Log in

Kinetics and mechanistic study of the reduction of \(\hbox {Mn}^{\mathrm{III}}\) by oxalate in Salophen scaffold: relevance to oxalate oxidase

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\({\hbox {OH}_{2})_{2}}^{+}\) and bioxalate (\(\hbox {HOX}^{-})\) in aqueous medium equilibrate rapidly to trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})\)(HOX) followed by the acid dissociation equilibrium to the (aqua) mono oxalato complex. The slow redox reactions of trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})\)(HOX/OX)\(^{0/-}\) with \(\hbox {H}_{2}\hbox {OX}\), \(\hbox {HOX}^{-}\),\(\hbox {OX}^{2-}\) obey second order kinetics satisfying 2:1 stoichiometry \(([\hbox {Mn}^{{\mathrm{III}}}]_{\mathrm{T}}/[\hbox {OX}]_{\mathrm{T}} = 2/1)\). The products are \(\hbox {Mn}^{{\mathrm{II}}}\) and \(\hbox {CO}_{2}\). Acrylamide monomer has no effect on the rate constant and the reaction does not induce its polymerization. The rate and activation parameters for the various rate limiting paths are reported. The intramolecular reduction of \(\hbox {Mn}^{{\mathrm{III}}}\) by the coordinated \(\hbox {HOX}^{-}\) and \(\hbox {OX}^{2-}\) in trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})(\hbox {HOX/OX})^{0/-}\) could not be detected. Contrary to our expectation, it is observed that \(\hbox {H}_{2}\hbox {OX}\) is a better reducing agent than \(\hbox {HOX}^{-}\) for trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})(\hbox {HOX})\), the slowest being the redox reaction of \(\hbox {OX}^{2-}\) with trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})(\hbox {OX})^{-}\). The molecular modelling by DFT depicts the structural trans effect in the oxalato complexes, it being maximum for trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})(\hbox {OX})^{-}\). The observed sequence of the redox activity of the oxalato complexes reflects the potential role of non-covalent interaction i.e. H-bonding, governing the proton controlled electron transfer process (PCET). The \(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen/Salen) complexes may turn out to be good substitute candidates for Oxalo Oxidase (OXO) enzyme in alleviating the oxalate overload in plants and animal biochemistry.

Graphical Abstract

The trans-\(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(\(\hbox {OH}_{2})_{2}^{+}\) undergoes equilibrium pre-association in aqueous medium with bioxalate forming \(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(HOX)\((\hbox {OH}_{2})\) and \(\hbox {Mn}^{{\mathrm{III}}}\)(Salophen)(OX)\((\hbox {OH}_{2})^{-}\) which are inert to intramolecular reduction but undergo reduction via second-order paths by \(\hbox {H}_{2}\hbox {OX}\), \(\hbox {HOX}^{-}\) and \(\hbox {OX}^{2-}\) with decreasing reactivity sequence implying proton controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. Kar A K, Acharya A N, Pradhan G C and Dash A C 2014 Glyoxylate as a reducing agent for manganese(III) in salen scaffold: A Kinetics and Mechanistic study J. Chem. Sci. 126 547

    Article  CAS  Google Scholar 

  2. Kar A K, Acharya A N, Mundlapati V R, Pradhan G C, Biswal H S and Dash A C 2014 Ligand substitution and electron transfer reactions of trans-(diaqua)(salen)manganese(III) with oxalate: an experimental and computational study RSC Adv. 4 58867

    Article  CAS  Google Scholar 

  3. Huynh M H V and Meyer T J 2007 Proton-coupled electron transfer Chem. Rev. 107 5004

    Article  CAS  PubMed  Google Scholar 

  4. Lane B G 1994 Oxalate, germin and the extracellular matrix of higher plants FASEB J. 8 294

    Article  CAS  PubMed  Google Scholar 

  5. (a) Sugiura M, Yamamura H, Hirano K, Sasaki M, Morikawa M and Tsuboi M 1979 Purification and properties of Oxalate Oxidase from Barley Seedlings Chem. Pharm. Bull. 27 2003; (b) Aguilar C, Urzua U, Koenig C and Vicuna R 1999 Oxalate Oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical studies Arch. Biochem. Biophys. 366 275

  6. Koyama H 1988 Purification and characterization of Oxalate Oxidase from pseudomonas Sp. Ox-53 Agri. Biol. Chem. 52 743

    CAS  Google Scholar 

  7. Yuan M, Zhao F, Zhang W, Wang Z-Ming and Gao S 2007 Azide–bridged one-dimensional \(\text{ Mn }^{III }\) polymers: effects of side group of schiff base ligands on structure and magnetism Inorg. Chem. 46 11235

    Article  CAS  PubMed  Google Scholar 

  8. Ciringh Y, Gordon-Wylie Scott W, Norman R E, Clark G R, Weintraub S T and Horwitz C P 1997 Multinuclear paramagnetic NMR spectra and solid state X-ray crystallographic characterization of manganese(III) Schiff-base complexes Inorg. Chem. 36 4968

    Article  CAS  Google Scholar 

  9. Bonadies J A, Maroney M J and Pecoraro V L 1989 Structurally diverse manganese(III) Schiff base complexes: solution speciation via paramagnetic proton NMR spectroscopy and electrochemistry Inorg. Chem. 28 2044

    Article  CAS  Google Scholar 

  10. Sawyer D T and Roberts Jr. J L 1974 Experimental Electrochemistry for Chemists (New York: Wiley-Intersc.) p. 42

    Google Scholar 

  11. Perrin D D and Dempsey B 1974 Buffers for pH and Metal Ion control (London: Chapman and Hall) p. 120

    Google Scholar 

  12. Irving H M, Miles M G and Pettit L D 1967 A study of some problems in determining the stoichiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode Anal. Chim. Acta 38 475

    Article  CAS  Google Scholar 

  13. Mcgravey B R 1966 In Transition Metal Chemistry, R L Carlin (Ed.) (New York: Marcel Dekker Inc.) Vol. 3 p. 89

  14. Jones T J and Noyes R M 1983 Mechanistic details of the oxidation of oxalate by Manganese(III) J. Phys. Chem. 87 4686

    Article  CAS  Google Scholar 

  15. Kovács B, Vizvári B, Riedel M and Tóth J 2004 Decomposition of the permanganate/oxalic acid overall reaction to elementary steps on integer programming theory Phys. Chem. Chem. Phys. 6 1236

    Article  Google Scholar 

  16. Alrichs R, Bär M, Häser M, Horn H and Kölmel C 1989 Electronic Structure Calculations on Workstation computers: The program system turbomole Chem. Phys. Lett. 162 165

    Article  Google Scholar 

  17. Treutlor O and Ahlrichs R 1995 Efficient molecular numerical integration schemes J. Chem. Phys. 102 346

    Article  Google Scholar 

  18. Vahtras O, Almlöf J and Feyereisen M W 1993 Integral approximation for LCAO-SCF Calculations Chem. Phys. Lett. 213 514

    Article  CAS  Google Scholar 

  19. Eichkorn K, Treutlor O, Öhm H, Häser M and Alrichs R 1995 Auxiliary basis sets to approximate coulomb potentials Chem. Phys. Lett. 240 283

    Article  CAS  Google Scholar 

  20. Eichkorn K, Treutlor O, Öhm H, Häser M and Alrichs R 1995 Auxiliary basis sets to approximate coulomb potential Chem. Phys. Lett. 242 652

    Article  CAS  Google Scholar 

  21. Fukuda T, Sakamoto F, Sato M, Nakano Y, Tan X Shi and Fujii Y 1998 Photopromoted oxidative cyclization of an o-phenylene-bridged Schiff base via manganese(III) complex, leading to fluorescent compound, 2-(2-hydroxyphenyl)benzimidazole Chem. Commun. 1391

  22. McAuliffe C A, Nabhan A, Pritchard R G, Watkinson M, Bermejo M and Sousa A 1994 [Mn(Salphen)(EtOH)\(_{2}\)](\(\text{ BH }_{4}\)) [\(\text{ SalphenH }_{2}=N\), \(N^{\prime \prime }\)-bis(salicylidene)-1,2-diaminobenzene], a further example of photosyntheic model compound forming dimers linked by hydrogen and \(\pi \) bonds Acta Cryst. C 50 1676

    Article  Google Scholar 

  23. Requena L and Bornemann S 1999 Barley (Horeum vulgare) oxalate oxidase is a manganese-containing enzyme Biochem. J. 343 185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Opaleye O, Rose R-Sarah, Whittaker M M, Woo E J, Whittaker J W and Pickersgill R W 2006 Structural and spectroscopic studies shed light on the mechanism of oxalate oxidase J. Biol. Chem. 281 6428

    Article  CAS  PubMed  Google Scholar 

  25. Noritke Y, Umezawa N, Kato N and Higuchi T 2013 Manganese Salen complexes with acid-base catalytic auxiliary: Functional mimetics of catalase Inorg. Chem. 52 3653

    Article  CAS  Google Scholar 

  26. Lanza V and Vechhio G 2009 New Conjugates of Superoxide dismutases/Catalases mimetics with cyclodextrins J. Inorg. Biochem. 102 381

    Article  CAS  Google Scholar 

  27. Olivera V and Vecchio G 2011 A novel artificial superoxide dismutase: Non covalent conjugation of albumin with a \(\text{ Mn }^{{\text{ III }}}\)-Salophen type complex Eur. J. Med. Chem. 46 961

    Article  CAS  Google Scholar 

  28. Liu Shih-Yuan, Soper J D, Yang J Y, Rybak-Akimova E V and Nocera D G 2006 Mechanistic Studies of Hangman Salophen-mediated activation of O–O bonds Inorg. Chem. 45 7572

    Article  CAS  Google Scholar 

  29. Riley D P 1999 Functional mimics of Superoxide Dismutase Enzymes as Therapeutic Agents Chem. Rev. 99 2573

    Article  CAS  PubMed  Google Scholar 

  30. (a) Dahiya T and Pundir C S 2013 In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria Indian J. Med. Res. 137 136; (b) Gibson M I, Chen P Yang-Ting, Johnson A C, Piera E, Can M, Ragsdale S W and Drennan C L 2016 One Carbon Chemistry of Oxalate Oxidoreductase Captured by X-ray Crystallography PNAS 113 320, and references cited therein

  31. Signorella S, Palopoli C and Ledesma G 2018 Rationally designed mimics for antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity Coord. Chem. Rev. 365 75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P J is thankful to MHRD, Govt. of India for a fellowship under Technical Education Quality Improvement Program (TEQIP-II). Financial support to H S B and V R M from the Department of Atomic Energy (DAE), Govt. of India is gratefully acknowledged. The authors are thankful to Dr. R. K. Behera of National Institute of Technology (NIT), Rourkela for NMR measurements and to Prof. Gautam K. Lahiri, Indian Institute of Technology, Mumbai for ESR measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Achyuta N Acharya, Anadi C Dash or Himansu S Biswal.

Additional information

This work is dedicated to Late Professor Rabindra Kumar Nanda (ex-Professor & Head of the Department of Chemistry, Utkal University, Bhubaneswar).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, P., Acharya, A.N., Mundlapati, V.R. et al. Kinetics and mechanistic study of the reduction of \(\hbox {Mn}^{\mathrm{III}}\) by oxalate in Salophen scaffold: relevance to oxalate oxidase. J Chem Sci 130, 123 (2018). https://doi.org/10.1007/s12039-018-1514-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1514-4

Keywords

Navigation