Skip to main content
Log in

Mechanisms of scavenging superoxide, hydroxyl, nitrogen dioxide and methoxy radicals by allicin: catalytic role of superoxide dismutase in scavenging superoxide radical

Journal of Chemical Sciences Aims and scope Submit manuscript

Cite this article

Abstract

The occurrence of free radicals such as superoxide radical anion (\({\hbox {O}_{2}}^{\cdot -}\)), hydroxyl radical (\(\hbox {O}\hbox {H}^{\cdot }\)), methoxy radical (\({\hbox {OC}\hbox {H}_{3}}^{\cdot }\)) and nitrogen dioxide radical (\({\hbox {N}\hbox {O}_{2}}^{\cdot }\)) inside living cells can be very hazardous as these radicals can modify structures and functions of different biomolecules. Both exogenous antioxidants taken as components of diet and endogenous enzyme antioxidants can scavenge \({\hbox {O}_{2}}^{\cdot -}\) separately. Mechanisms of scavenging \({\hbox {O}_{2}}^{\cdot -}\) by combinations of exogenous and endogenous enzyme antioxidants are not understood properly. In order to understand mechanisms of scavenging \({\hbox {O}_{2}}^{\cdot -}\), \({\hbox {O}\hbox {H}}^{\cdot }\), \({\hbox {OC}\hbox {H}_{3}}^{\cdot }\), and \({\hbox {N}\hbox {O}_{2}}^{\cdot }\) by allicin, and possible roles of superoxide dismutase (SOD) in scavenging \({\hbox {O}_{2}}^{\cdot -}\), density functional theory was employed. Marcus theory was also employed to study scavenging of \({\hbox {O}\hbox {H}}^{\cdot }\), \({\hbox {OC}\hbox {H}_{3}}^{\cdot }\) and \({\hbox {N}\hbox {O}_{2}}^{\cdot }\) by electron transfer. In order to find the most probable mechanisms of scavenging these radicals, different types of reactions such as one and two hydrogen atom transfer (HAT), single electron transfer (SET) and sequential proton loss electron transfer (SPLET) processes were investigated. It is found that allicin can scavenge \({\hbox {O}_{2}}^{\cdot -}\) via double hydrogen atom transfer catalyzed by Fe-SOD efficiently. Further, allicin can scavenge \({\hbox {O}\hbox {H}}^{\cdot }\) by SET, and \({\hbox {OC}\hbox {H}_{3}}^{\cdot }\) and \({\hbox {N}\hbox {O}_{2}}^{\cdot }\) by SPLET mechanisms most efficiently. Our results are in qualitative agreement with the available experimental data wherever these are available.

Graphical Abstract

SYNOPSIS It is shown for the first time, theoretically, that while allicin in the absence of a catalyst would not scavenge \(\hbox {O2}\cdot ^{-}\), it would do so efficiently in the presence of the Fe-superoxide dismutase enzyme. It is also shown that allicin is not a scavenger of hydroxyl, nitrogen dioxide and methoxy radicals but its anion would scavenge efficiently all the three radicals by single electron transfer (SET). Further, it is shown that scavenging of nitrogen dioxide and methoxy radicals would occur very efficiently by sequential proton loss electron transfer (SPLET) from allicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fridovich I 1978 The biology of oxygen radicals Science 201 875

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B and Gutteridge J M C 1984 Oxygen toxicity, oxygen radicals, transition metals and disease Biochem. J.  219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jena N R 2012 DNA damage by reactive species: Mechanisms, mutation and repair J. Biosci. 37 503

    Article  CAS  PubMed  Google Scholar 

  4. Turrens J F 2003 Mitochondrial formation of reactive oxygen species J. Physiol. 552 335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beckman J S and Koppenol W H 1996 Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly Am. J. Physiol. 271 C1424

    Article  CAS  PubMed  Google Scholar 

  6. Radi R, Cassina A, Hodara R, Quijano C and Castro L 2002 Peroxynitrite reactions and formation in mitochondria Free Rad. Biol. Med. 33 1451

    Article  CAS  PubMed  Google Scholar 

  7. Usmar V D and Halliwell B 1996 Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system Pharm. Res. 13 649

    Article  Google Scholar 

  8. Pryor W A 1986 Oxy-radicals and related species: their formation, lifetimes, and reactions Annu. Rev. Physiol.  48 657

    Article  CAS  PubMed  Google Scholar 

  9. Wiseman H and Halliwell B 1996 Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer J. Biochem.  313 17

    Article  CAS  Google Scholar 

  10. Marnett L J 2000 Oxyradicals and DNA damage Carcinogenesis 21 361

    Article  CAS  PubMed  Google Scholar 

  11. Hussain S P, Hofseth L J and Harris C C 2003 Radical causes of cancer Nat. Rev. Cancer 3 276

    Article  CAS  PubMed  Google Scholar 

  12. Jena N R and Mishra P C 2005 Mechanisms of formation of 8-Oxoguanine due to reactions of one and two \(\text{ O }\text{ H }^{.}\) radicals and the \(\text{ H }_{2}\text{ O }_{2 }\)molecule with guanine: A quantum computational study J. Phys. Chem. B 109 14205

    Article  CAS  PubMed  Google Scholar 

  13. Jena N R and Mishra P C 2012 Formation of ring-opened and rearranged products of guanine: Mechanisms and biological significance Free Rad. Biol.  53 81

    Article  CAS  Google Scholar 

  14. Simons J 2006 How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks? Acc. Chem. Res. 39 772

    Article  CAS  PubMed  Google Scholar 

  15. Mishina Y, Duguid E M and He C 2006 Direct reversal of DNA alkylation damage Chem. Rev. 106 215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neeley W L and Essigmann J M 2006 Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products Chem. Res. Toxicol. 19 491

    Article  CAS  PubMed  Google Scholar 

  17. Agnihotri N and Mishra P C 2011 Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin J. Phys. Chem. A 115 14221

    Article  CAS  PubMed  Google Scholar 

  18. Tiwari M K and Mishra P C 2013 Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals J. Mol. Model. 19 5445

    Article  CAS  PubMed  Google Scholar 

  19. Tiwari M K and Mishra P C 2016 Anti-oxidant activity of 6-gingerol as a hydroxyl radical scavenger by hydrogen atom transfer, radical addition and electron transfer mechanisms J. Chem. Sci.  128 1199

    Article  CAS  Google Scholar 

  20. Prasad A K and Mishra P C 2015 Mechanism of action of sulforaphane as a superoxide radical anion and hydrogen peroxide scavenger by double hydrogen transfer: A model for iron superoxide dismutase J. Phys. Chem. B 119 7825

    Article  CAS  Google Scholar 

  21. Tiwari M K and Mishra P C 2016 Catalytic role of iron-superoxide dismutase in hydrogen abstraction by super oxide radical anion from ascorbic acid RSC Adv. 6 86650

    Article  CAS  Google Scholar 

  22. Prasad K, Laxdal V A, Yu M and Raney B L 1995 Antioxidant activity of allicin, an active principle in garlic Mol. Cell Biochem. 148 183

    Article  CAS  PubMed  Google Scholar 

  23. Lawson L D and Gardner C D 2005 Composition, stability, and bioavailability of garlic products used in a clinical trial J. Agric. Food Chem.  53 6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao H and Parkin K L 2002 Antioxidant functions of selected allium thiosulfinates and S-alk(en)yl-L-cysteine sulfoxides J. Agric. Food Chem.  50 2488

    Article  CAS  PubMed  Google Scholar 

  25. Block E 1992 The organosulfur chemistry of the genus allium-implications for the organic chemistry sulfur Angew. Chem. Int. Edit. Engl.  31 1135

    Article  Google Scholar 

  26. Block E 1985 The chemistry of garlic and onions Sci. Am. 252 114

    Article  CAS  PubMed  Google Scholar 

  27. Miron T, Rabinkov A, Mirelman D, Wilchek M and Weiner L 2000 The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity Biochim. Biophys. Acta 1463 20

    Article  CAS  Google Scholar 

  28. Okada Y, Tanaka K, Sato E and Okajima H 2006 Kinetic and mechanistic studies of allicin as an antioxidant Org. Biomol. Chem. 4 4113

    Article  CAS  PubMed  Google Scholar 

  29. Lynett P T, Butts K, Vaidya, V, Garrett G E and Pratt D A 2011 The mechanism of radical-trapping antioxidant activity of plant-derived thiosulfinates Org. Biomol. Chem. 9 3320

    Article  CAS  PubMed  Google Scholar 

  30. Rabinkov A, Miron T, Konstantinovski L, Wilchek, M, Mirelman, D and Weiner L 1998 The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins Biochim. Biophys. Acta 1379 233

    Article  CAS  PubMed  Google Scholar 

  31. Chung L Y 2006 The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide J. Med. Food. 9 205

    Article  CAS  PubMed  Google Scholar 

  32. Fridovich I 1995 Superoxide radical and superoxide dismutases Annu. Rev. Biochem. 64 97

    Article  CAS  PubMed  Google Scholar 

  33. Flint D H, Tuminello J F and Emptage M H 1993 The inactivation of Fe-S cluster containing hydro-lyases by superoxide J. Biol. Chem. 268 22369

    CAS  PubMed  Google Scholar 

  34. Zhao Y and Truhlar D G 2011 Applications and validations of the Minnesota density functional Chem. Phys. Lett. 502 1

    Article  CAS  Google Scholar 

  35. Zhao Y and Truhlar D G 2008 Exploring the limit of accuracy of the global hybrid meta density functional for main group thermochemistry, kinetics, and noncovalent interactions J. Chem. Theory Comput. 4 1849

    Article  CAS  PubMed  Google Scholar 

  36. Miertus S, Scrocco E and Tomasi J 1981 Electrostatic interaction of a solute with a continuum. A direct utilization of Ab-Initio molecular potentials for the prevision of solvent effects Chem. Phys. 55 117

    Article  CAS  Google Scholar 

  37. Miertus S and Tomasi J 1982 Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes Chem. Phys. 65 239

    Article  CAS  Google Scholar 

  38. Laidler K J 2004 In Chemical Kinetics \(3^{\rm rd}\) edn. (Pearson Education (Singapore) Pte Ltd, Indian Branch, Patparganj, Delhi)

  39. Skodje R T and Truhlar D G 1981 Parabolic tunnelling calculations J. Phys. Chem. 34 624

    Article  Google Scholar 

  40. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam M J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V and Cioslowski J 2009 (Gaussian 09, revision D.01, Gaussian Inc.; Wallingford, CT USA)

  41. Dennington R, Keith T and Millam J 2009 GaussView, Version 5. Semichem. Inc. Shawnee Mission, KS

  42. Winterbourn C C 1995 Toxicity of iron and hydrogen peroxide: the Fenton reaction Toxicol. Lett. 82 969

    Article  PubMed  Google Scholar 

  43. Munoz I G, Moran J F, Becana M and Montoya G 2005 The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis Protein Sci. 14 387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Misra H P 1984 Inhibition of superoxide dismutase by nitroprusside and electron spin resonance observations on the formation of a superoxide-mediated nitroprusside nitroxyl free radical J. Biol. Chem. 259 12678

    CAS  PubMed  Google Scholar 

  45. Dumay A, Rincheval V, Trotot P, Mignotte B and Vayssière J L 2006 The superoxide dismutase inhibitor diethyldithiocarbamate has antagonistic effects on apoptosis by triggering both cytochrome c release and caspase inhibition Free Rad. Biol. Med. 40 1377

    Article  CAS  PubMed  Google Scholar 

  46. Lengfelder E 1979 On the action of diethyldithiocarbamate as inhibitor of copper-zinc superoxide dismutase Z. Naturforsch. 34C 1292

    Article  CAS  Google Scholar 

  47. Sanz A M, Gómez-Contreras F, Navarro P, Sánchez-Moreno M, Boutaleb-Charki S, Campuzano J, Pardo M, Osuna A, Cano C, Yunta M J R and Campayo L 2008 Efficient inhibition of iron superoxide dismutase and of trypanosoma cruzi growth by benzo[\(g\)]phthalazine derivatives functionalized with one or two imidazole rings J. Med. Chem. 51 1962

    Article  CAS  PubMed  Google Scholar 

  48. Sánchez-Moreno M, Gómez-Contreras F, Navarro P, Marín C, Ramírez-Macías, Rosales M J, Campayo L, Cano C, Sanz A M and Yunta M J 2015 Parasitology 142 1115

  49. Prasad A K and Mishra P C 2017 Catalytic action of Mn-superoxide dismutase in scavenging superoxide radical anion by double hydrogen abstraction from dihydrolipoic acid: A theoretical study Int. J. Quant. Chem. 117 e25355

    Article  CAS  Google Scholar 

  50. Marcus R A 1964 Chemical and electrochemical electron transfer theory Annu. Rev. Phys. Chem. 15 155

    Article  CAS  Google Scholar 

  51. Marcus R A 1993 Electron transfer reactions in chemistry. Theory and experiment Rev. Mod. Phys. 65 599

    Article  CAS  Google Scholar 

  52. Marcus R A 1997 Electron transfer reactions in Chemistry. Theory and experiment Pure App. Chem. 69 13

    Article  CAS  Google Scholar 

  53. Nelsen S F, Blackstock S C and Kim Y 1987 Estimation of inner shell marcus terms for amino nitrogen compounds by molecular orbital calculations J. Am. Chem. Soc. 109 677

    Article  CAS  Google Scholar 

  54. Nelsen S F, Weaver M N, Luo Y, Pladziewicz J R, Ausman L K, Jentzsch T L and O’Konek J J 2006 Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data J. Phys. Chem. A 110 11665

    Article  CAS  PubMed  Google Scholar 

  55. Litwinienko G and Ingold K U 2003 Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-Diphenyl-1-picrylhydrazyl (dpph) in alcohols J. Org. Chem. 68 3433

    Article  CAS  PubMed  Google Scholar 

  56. Litwinienko G and Ingold K U 2004 Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer J. Org. Chem. 69 5888

    Article  CAS  PubMed  Google Scholar 

  57. Litwinienko G and Ingold K U 2005 Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry J. Org. Chem. 70 8982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (PCM) is thankful to the National Academy of Sciences, India (NASI) for the award of a Senior Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phool Chand Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 667 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, M.K., Jena, N.R. & Mishra, P.C. Mechanisms of scavenging superoxide, hydroxyl, nitrogen dioxide and methoxy radicals by allicin: catalytic role of superoxide dismutase in scavenging superoxide radical. J Chem Sci 130, 105 (2018). https://doi.org/10.1007/s12039-018-1509-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1509-1

Keywords

Navigation