Skip to main content

Advertisement

Log in

Steric influence of adamantane substitution in tris-urea receptor: encapsulation of sulphate and fluoride-water cluster

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Abstract

Tris(2-aminoethyl)amine (tren)-based bulky adamantane group-substituted tris-urea (L) has been developed as the potential tripodal receptor exhibiting strong binding affinities towards small spherical fluoride anion as well as large tetrahedral sulphate anion in its neutral and protonated form, respectively. Structural elucidation reveals that the divalent sulphate ion is fully engulfed inside the complementary space created by two face-to-face oriented symmetry-independent protonated receptors, whereas the smaller fluoride ion is encapsulated as fluoride-water cluster (\(\hbox {F}^{-}\hbox {-H}_{2}\hbox {O}\)) assemblage within the neutral unimolecular capsular assembly of receptor L.

GRAPHICAL ABSTRACT

SYNOPSIS Entrapment of Sulphate and fluoride-water cluster within the rigid cavity of adamantine-substituted tris-urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bianchi A, Garcia-Espana E and James K B 1997 Supramolecular Chemistry of Anions (New York: Wiley-VCH)

    Google Scholar 

  2. Manez R M and Sancenon F 2003 Fluorogenic and chromogenic chemosensors and reagent for anions Chem. Rev. 103 4419

    Article  CAS  Google Scholar 

  3. Beer P D and Gale P A 2001 Anion recognition and sensing: The state of the art and future perspectives Angew. Chem., Int. Ed. 40 486

    Article  CAS  Google Scholar 

  4. Gale P A 2003 Anion and ion-pair receptor chemistry: highlights from 2000 and 2001 Coord. Chem. Rev. 240 191

    Article  CAS  Google Scholar 

  5. Gale P A 2006 Structural and molecular recognition studies with acyclic anion receptors Acc. Chem. Res. 39 465

    Article  CAS  PubMed  Google Scholar 

  6. Jose D A, Kumar D K, Ganguly B and Das A 2004 Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites Org. Lett. 6 3445

    Article  CAS  PubMed  Google Scholar 

  7. (a)Gale P A, Garcia-Garrido S E and Garric J 2008 Anion receptors based on organic frameworks: highlights from 2005 and 2006 Chem. Soc. Rev. 37 151; (b) Sessler J L, Gale P A and Cho W-S 2006 Anion Receptor Chemistry (Monographs in Supramolecular Chemistry) J F Stoddart (Ed.) (Cambridge UK: Royal Society of Chemistry)

  8. (a) Benjamin I 2010 Structure and dynamics of hydrated ion pairs in a hydrophobic environment J. Phys. Chem. B 114 13358; (b) Schatteburg G N and Bondybey V E 2000 FT-ICR studies of solvation effects in ionic water cluster reactions Chem. Rev. 100 4059; (c) Eggimann B L and Siepmann J I 2008 Size effects on the solvation of anions at the aqueous liquid-vapor interface J. Phys. Chem. C 112 210

  9. (a) Cametti M and Rissanen K 2009 Recognition and sensing of fluoride anion Chem. Commun. 2809; (b) Hossain M A, Llinares J M, Mason S, Morehouse P, Powell D and James K B 2002 Parallels in cation and anion coordination: A new class of cascade complexes Angew. Chem. Int. Ed. 114 2441; (c) Wang Q-Q, Day V W and James K B 2012 Supramolecular encapsulation of tetrahedrally hydrated guests in tetrahedron host Angew. Chem., Int. Ed. 124 2161; (d) Lakshminarayanan P S, Suresh E and Ghosh P 2006 A hybrid water-chloride structure with discrete undecameric water moieties self-assembled in a heptaprotonated octaamino cryptand Angew. Chem. Int. Ed. 45 3807

  10. (a) Kang S O, Begum R A and James K B 2006 Amide-based ligands for anion coordination Angew. Chem. Int. Ed. 45 7882; (b) Kang S O, Hossain M A and James K B 2006 Influence of dimensionality and charge on anion binding in amide-based macrocyclic receptors Coord. Chem. Rev. 250 3038

  11. (a) Li A F, Wang J H, Wang F and Jiang Y B 2010 Anion complexation and sensing using modified urea and thiourea-based receptors Chem. Soc. Rev. 39 3729; (b) Amendola V, Fabbrizzi L and Mosca L 2010 Anion recognition by hydrogen bonding: urea-based receptors Chem. Soc. Rev. 39 3889; (c) Olivari M, Montis R, Berry S N, Karagiannidis L E, Coles S J, Horton P N, Mapp L K, Gale P A and Caltagirone C 2016 Tris-ureas as transmembrane anion transporters Dalton Trans. 45 11892; (d) Makela T and Rissanen K 2016 Ion pair complexes and anion binding in the solution of a ditopic receptor Dalton Trans. 45 6481; (e) Cholewiak A, Tycz A and Jurczak J 2017 8-Propyldithieno[\(3,2-b:2^{\prime } \),\(3^{\prime } -e\)]pyridine-3,5-diamine (DITIPIRAM) derivatives as neutral receptors tailored for binding of carboxylates Org. Lett. 19 3001; (f) Rubio O H, Mazo S D, Monleon L M, Simon L, Temprano A G and Moran J R 2017 A cleft type receptor which combines an oxyanion hole with electrostatic interactions Org. Biomol. Chem. 15 4571; (g) Gale P A, Davis J T and Quesada R 2017 Anion transport and supramolecular medicinal chemistry Chem. Soc. Rev. 46 2497

  12. (a) Yoo J, Kim M-S, Hong S-J, Sessler J L and Lee C-H 2009 Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines J. Org. Chem. 74 1065; (b) Sessler J L, Cai J, Gong H Y, Yang X, Arambula J F and Hay B P 2010 A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions J. Am. Chem. Soc. 132 14058

  13. (a) Gale P A 2008 Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing Chem. Commun. 4525; (b) Sessler J L, Cho D G and Lynch V 2006 Diindolylquinoxalines: effective indole-based receptors for phosphate anion J. Am. Chem. Soc. 128 16518; (c) Gale P A, Hiscock J R, Jie C Z, Hursthouse M B and Light M E 2010 Acyclic indole and carbazole-based sulfate receptors Chem. Sci. 1 215

  14. Arunachalam M and Ghosh P 2011 Anion induced capsular self-assemblies Chem. Commun. 47 8477

    Article  CAS  Google Scholar 

  15. (a) Rudzevich Y, Rudzevich V, Schollmeyer D, Thondorf I and Bohmer V 2005 Hydrogen bonded dimers of triurea derivatives of triphenylmethanes Org. Lett. 7 613; (b) Bray D J, Antonioli B, Clegg J K, Gloe K, Gloe K, Jolliffe K A, Lindoy L F, Wei G and Wenzel M 2008 Assembly of a trinuclear metallo-capsule from a tripodal tris(\(\beta \)-diketone) derivative and copper(II) Dalton Trans. 1683; (c) Alajarin M, Lazaro A L, Pastor A, Prince P D, Steed J W and Arakawa R 2001 Dimerization of tris(\(o\)-ureidobenzyl)amines: a novel class of aggregates Chem. Commun. 169; (d) Alajarin M, Pastor A, Orenes R-A and Steed J W 2002 Dimeric self-assembling capsules derived from the highly flexible tribenzylamine skeleton J. Org. Chem. 67 7091; (e) Alajarin M, Pastor A, Orenes R-A, Steed J W and Arakawa R 2004 Self-assembly of tris(2-ureidobenzyl)amines: A new type of capped, capsule-like dimeric aggregates derived from a highly flexible skeleton Chem.—Eur. J. 10 1383; (f) Alajarin M, Pastor A, Orenes R-A, Viviente E M, Ruegger H and Pregosin P S 2007 Structure, stability and guest affinity of tris(3-ureidobenzyl)amine capsules in Solution Chem. Eur. J. 13 1559; (g) Alajarin M, Pastor A, Orenes R-A, Viviente E M and Pregosin P S 2006 Pulsed gradient spin echo (PGSE) diffusion measurements as a tool for the elucidation of a new type of hydrogen-bonded bicapsular aggregate Chem.—Eur. J. 12 877; (h) Alajarin M, Pastor A, Orenes R-A, Goeta A E and Steed J W 2008 Highly diastereoselective self-assembly of chiral tris(\(m\)-ureidobenzyl)amino capsules Chem. Commun. 3992; (i) Rudzevich Y, Rudzevich V, Schollmeyer D, Thondorf I and Bohmer V 2006 Hydrogen bonding in dimers of tritolyl and tritosylurea derivatives of triphenylmethanes Org. Biomol. Chem. 4 3938; (j) Bray D J, Liao L –L, Antonioli B, Gloe K, Lindoy L F, McMurtrie J C, Wei G and Zhang X-Y 2005 Assembly of a tri-silver metallo-capsule incorporating a tripodal tris-pyridyl ligand Dalton Trans. 2082

  16. (a) Barth M C and Church A T 1999 Regional and global distributions and lifetimes of sulfate aerosols from Mexico City and southeast China J. Geophys. Res. 104 30231; (b) Heizer W D, Sandler R S, Seal E Jr, Murray S C, Busby M G, Schliebe B G and Pusek S N 1997 Intestinal effects of sulfate in drinking water on normal human subjects Dig. Dis. Sci. 42 1055

  17. (a) Sessler J L, Katayev E, Pantos G D and Ustynyuk Y A 2004 Synthesis and study of a new diamidodipyrromethane macrocycle. An anion receptor with a high sulfate-to-nitrate binding selectivity Chem. Commun. 1276; (b) Eller L R, Stepien M, Fowler C J, Lee J T, Sessler J L and Moyer B A 2007 Octamethyl-octaundecylcyclo[8]pyrrole: a promising sulfate anion extractant J. Am. Chem. Soc. 129 11020

  18. Cametti M and Rissanen K 2009 Recognition and sensing of fluoride anion Chem. Commun. 2809

  19. Ravikumar I, Lakshminarayanan P S, Arunachalam M, Suresh E and Ghosh P 2009 Anion complexation of a pentafluorophenyl-substituted tripodal urea receptor in solution and the solid state: selectivity toward phosphate Dalton Trans. 4160

  20. Mascal M, Yakovlev I, Nikitin E B and Fettinger J C 2007 Fluoride-selective host based on anion-\(\pi \) interactions, ion pairing, and hydrogen bonding: synthesis and fluoride-ion sandwich complex Angew. Chem., Int. Ed. 46 8782

    Article  CAS  Google Scholar 

  21. Kang S O, Velde D V, Powell D and James K B 2004 Fluoride-faciliated deuterium exchange from DMSO-\(\text{ d }_{6}\) to polyamide-based cryptands J. Am. Chem. Soc. 126 12272

    Article  CAS  PubMed  Google Scholar 

  22. Dey S K, Chutia R and Das G 2012 Oxyanion-encapsulated caged supramolecular frameworks of a Tris(urea) receptor: Evidence of hydroxide- and fluoride-ion-induced fixation of atmospheric \(\text{ CO }_{2 }\) as a trapped \(\text{ CO }_{3}{}^{2-}\) anion Inorg. Chem. 51 1727

    Article  CAS  PubMed  Google Scholar 

  23. Manna U, Chutia R and Das G 2016 Entrapment of cyclic fluoride-water and sulfate-water-sulfate cluster within the self-assembled structure of linear meta-phenylenediamine based bis-urea receptors: Positional isomeric effect Cryst. Growth Des. 16 2893

    Article  CAS  Google Scholar 

  24. Manna U, Nayak B and Das G 2016 Dual guest [\(\text{(chloride) }_{3}\)-DMSO] encapsulated cation-sealed neutral trimeric capsular assembly: Meta-substituent directed halide and oxyanion binding discrepancy of isomeric neutral disubstituted bis-urea receptors Cryst. Growth Des. 16 7163

    Article  CAS  Google Scholar 

  25. Dey S K and Das G 2011 Encapsulation of trivalent phosphate anion within a rigidified \(\pi \)-stacked dimeric capsular assembly of tripodal receptor Dalton Trans. 40 12048

    Article  CAS  PubMed  Google Scholar 

  26. Manna U, Nayak B, Hoque M N and Das G 2016 Influence of the cavity dimension on encapsulation of halides within the capsular assembly and side-cleft recognition of a sulfate–water cluster assisted by polyammonium tripodal receptors CrystEngComm 18 5036

    Article  CAS  Google Scholar 

  27. Samanta S, Manna U, Ray T and Das G 2015 An aggregation-induced emission (AIE) active probe for multiple targets: a fluorescent sensor for \(\text{ Zn }^{2+}\) and \(\text{ Al }^{3+}\) & a colorimetric sensor for \(\text{ Cu }^{2+}\) and \(\text{ F }^{-}\) Dalton Trans. 44 18902

    Article  CAS  PubMed  Google Scholar 

  28. Hoque M N, Manna U and Das G 2016 Encapsulation of fluoride and hydrogen sulfate dimer by polyammonium-functionalised first- and second-generation tripodal: cavity-induced anion encapsulation Supramol. Chem. 28 284

    Article  CAS  Google Scholar 

  29. Chutia R and Das G 2014 Hydrogen and halogen bonding in a concerted act of anion recognition: \(\text{ F }^{-}\) induced atmospheric \(\text{ CO }_{2}\) uptake by an iodophenyl functionalized simple urea receptor Dalton Trans. 43 15628

    Article  CAS  PubMed  Google Scholar 

  30. Dey S K and Das G 2012 Selective inclusion of \(\text{ PO }_{4}^{3-}\) within persistent dimeric capsules of a tris(thiourea) receptor and evidence of cation/solvent sealed unimolecular capsules Dalton Trans. 41 8960

    Article  CAS  PubMed  Google Scholar 

  31. Basu A and Das G 2013 Encapsulation of a discrete cyclic halide water tetramer [\(\text{ X }_{2}(\text{ H }_{2}\text{ O })_{2}]^{2-}\), \(\text{ X } = \text{ Cl }^{-}/\text{ Br }^{-}\) within a dimeric capsular assembly of a tripodal amide receptor Chem. Commun. 49 3997

    Article  CAS  Google Scholar 

  32. Hoque M N and Das G 2014 Cationic tripodal receptor assisted formation of anion and anion–water clusters: Structural interpretation of dihydrogen phosphate cluster and sulfate–water tetramer [(\(\text{ SO }_{4})_{2}\)–(\(\text{ H }_{2}\text{ O })_{2}]^{4- }\) Cryst. Growth Des. 14 2962

    Article  CAS  Google Scholar 

  33. Basu A and Das G 2014 A \(C_{3v}\)-symmetric tripodal urea receptor for anions and ion pairs: formation of dimeric capsular assemblies of the receptor during anion and ion pair coordination J. Org. Chem. 79 2647

    Article  CAS  PubMed  Google Scholar 

  34. Hoque M N, Basu A and Das G 2012 Cyclic Pentameric Puckered Hybrid Chloride–Water Cluster [\(\text{ Cl }_{3}(\text{ H }_{2}\text{ O })_{4}]^{3-}\) in the Hydrophobic Architecture Cryst. Growth Des. 12 2153

    Article  CAS  Google Scholar 

  35. Hoque M N, Basu A and Das G 2014 Pyridine–urea-based anion receptor: Formation of cyclic sulfate–water hexamer and dihydrogen phosphate–water trimer in hydrophobic environment Cryst. Growth Des. 14 6

    Article  CAS  Google Scholar 

  36. Sheldrick G M 1995 SAINT and XPREP 5.1 edn. (Madison, WI: Siemens Industrial Automation Inc.)

  37. SADABS 1997 Empirical Absorption Correction Program (Göttingen, Germany: University of Göttingen)

  38. Sheldrick G M SHELXTL Reference Manual: Version 5.1 1997 (Madison, WI: Bruker AXS)

  39. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Crystallogr., Sect. C: Struct. Chem. 71 3

    Article  CAS  Google Scholar 

  40. Mercury 2.3 Supplied with Cambridge Structural Database 2011-2012 (Cambridge, U.K.: CCDC)

  41. Hay B P, Firman T K and Moyer B A 2005 Structural design criteria for anion hosts: Strategies for achieving anion shape recognition through the complementary placement of urea donor groups J. Am. Chem. Soc. 127 1810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CSIR and SERB (grants 01/2727/13/EMR-II and SR/S1/OC-62/2011), New Delhi, India. G.D acknowledges the CIF, IIT Guwahati and DST-FIST for providing instrument facilities. S.K. and U.M. thank IIT Guwahati for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Das.

Additional information

Special Issue on Modern Trends in Inorganic Chemistry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 487 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayal, S., Manna, U. & Das, G. Steric influence of adamantane substitution in tris-urea receptor: encapsulation of sulphate and fluoride-water cluster. J Chem Sci 130, 91 (2018). https://doi.org/10.1007/s12039-018-1504-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1504-6

Keywords

Navigation