Skip to main content
Log in

Ferrocene and triphenylamine appended boranils

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Boranils containing ferrocene and triphenylamine groups were synthesized and well characterized by IR, \(^{1}\hbox {H}\), \(^{13}\hbox {C}\), \(^{11}\hbox {B}\) and \(^{19}\hbox {F}\) NMR and ESI-MS spectrometry. UV-Vis absorption, steady-state and time-resolved fluorescence techniques were employed to study their photophysical properties. The presence of electron rich substituents caused significant alterations in their absorption and emission spectra. As compared to the parent boranil compound (\(\lambda _{\mathrm{abs}} = 342 \hbox { nm}\)), boranil-triphenylamine and boranil-ferrocene conjugates exhibited red shifted absorption maxima (\(\lambda _{\mathrm{abs}} = 384\), 375 nm, respectively). The boranil-triphenylamine and boranil-ferrocene conjugates displayed red shifted emission spectra (\(\lambda _{\mathrm{em}} = 524\), 489 nm, respectively), as compared to the parent boranil (\(\lambda _{\mathrm{em}} = 471 \hbox { nm}\)). Also, large Stokes shifts (\(6217{-}6958 \hbox { cm}^{-1}\)) were observed for both the conjugates in solution phase.

Graphical Abstract

SYNOPSIS Synthesis and optical properties of boranils containing ferrocene and triphenylamine groups are reported. The presence of substituents caused significant bathochromic shifts in their absorption and emission spectra. As compared to the parent boranil compound, boranil-triphenylamine and boranil-ferrocene conjugates exhibited 32–41 nm red shifted absorption spectra, and 18–53 nm red shifted emission spectra in solution. Also, large Stokes shifts (6200–6900 \(\hbox { cm}^{-1}\)) were observed for both the conjugates in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coskun A, Yilmaz M D and Akkaya E U 2007 Bis(2-pyridyl)-Substituted Boratriazaindacene as an NIR-Emitting Chemosensor for Hg(II) Org. Lett. 9 607

    CAS  Google Scholar 

  2. Yee M-C, Fas S C, Stohlmeyer M M, Wandless T J and Cimprich K A 2005 A Cell-permeable, Activity-based Probe for Protein and Lipid Kinases J. Biol. Chem. 280 29053

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi H, Ogawa M, Alford R, Choyke P L and Urano Y 2010 New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging Chem. Rev. 110 2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamkaew A, Lim S H, Lee H B, Kiew L V, Chung L Y and Burgess K 2013 BODIPY dyes in photodynamic therapy Chem. Soc. Rev. 42 77

    Article  CAS  PubMed  Google Scholar 

  5. O’Regan B and Graetzel M 1991 A low-cost, high-efficiency solar cell based on dye-sensitized colloidal \(\text{ TiO }_{2}\) films Nature 353 737

    Article  Google Scholar 

  6. Ryan A, Tuffy B, Horn S, Blau W J and Senge M O 2011 Carbazole-linked porphyrin dimers for organic light emitting diodes: synthesis and initial photophysical studies Tetrahedron 67 8248

    Article  CAS  Google Scholar 

  7. Lakshmi V, Sharma R and Ravikanth M 2016 Functionalized boron-dipyrromethenes and their applications Rep. Org. Chem. 6 1

    CAS  Google Scholar 

  8. Vedamalai M, Kedaria D, Vasita R, Mori S and Gupta I 2016 Design and synthesis of BODIPY-clickate based \(\text{ Hg }^{2+}\) sensors: the efect of triazole binding mode with \(\text{ Hg }^{2+}\) on signal transduction Dalton Trans. 45 2700

    Article  CAS  PubMed  Google Scholar 

  9. Ziessel R and Harriman A 2011 Artificial light-harvesting antennae: electronic energy transfer by way of molecular funnels Chem. Commun. 47 611

    Article  CAS  Google Scholar 

  10. Kesavan P E and Gupta I 2014 Carbazole substituted boron dipyrromethenes Dalton Trans. 43 12405

    Article  CAS  PubMed  Google Scholar 

  11. Kesavan P E, Das S, Lone M Y, Jha P C, Mori S and Gupta I 2015 Bridged bis-BODIPYs: their synthesis, structures and properties Dalton Trans. 44 17209

    Article  CAS  PubMed  Google Scholar 

  12. Kesavan P E, Behera R N, Mori S and Gupta I 2017 Carbazole Substituted BODIPYs: Synthesis, Computational, Electrochemical and DSSC Studies J. Fluoresc. 27 2131

    Article  CAS  PubMed  Google Scholar 

  13. Vedamalai M, Krishnakumar V G, Gupta S, Mori S and Gupta I 2017 Synthesis and characterization of styryl-BODIPY derivatives for monitoring in vitro Tau aggregation Sens. Actuat. B-Chem. 244 673

    Article  CAS  Google Scholar 

  14. Balsukuri N, Boruah N J, Kesavana P E and Gupta I 2018 Near Infra-Red Dyes Based on Pyrene Aza-BODIPYs New J. Chem. 42 5875

    Article  CAS  Google Scholar 

  15. Balsukuri N, Lone M Y, Jha P C, Mori S and Gupta I 2016 Synthesis, Structure, and Optical Studies of Donor–Acceptor-Type Near-Infrared (NIR) Aza–Boron-Dipyrromethene (BODIPY) Dyes Chem. Asian J. 11 1572

    Article  CAS  PubMed  Google Scholar 

  16. Balsukuri N, Mori S and Gupta I 2016 Donor acceptor type ferrocene substituted aza-BODIPYs: Synthesis, optical and electrochemical studies J. Porphyrins Phthalocyanines 20 720

    Article  CAS  Google Scholar 

  17. Ge Y and O’Shea D F 2016 Azadipyrromethenes: from traditional dye chemistry to leading edge applications Chem. Soc. Rev. 45 384618

    Article  Google Scholar 

  18. Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher W M and O’Shea D F 2004 In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy J. Am. Chem. Soc. 126 10619

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Burghart A, Welch M B, Reibenspies J and Burgess K 1999 Synthesis and spectroscopic properties of a new 4-bora-3a,4a-diaza-\(s\)-indacene (BODIPY) dye Chem. Commun. 1889

  20. Quin-De L, Mudadu M S, Thummel R, Tao Y and Wang S 2005 From Blue to Red: Syntheses, Structures, Electonic, and Electroluminescent Properties of tunable Luminescent N,N Chelate Boron Complexes Adv. Funct. Mater. 15 143

    Article  CAS  Google Scholar 

  21. Jadhav T, Maragani R, Misra R, Sreeramulu V, Rao D N and Mobin S M 2013 Design and synthesis of donor–acceptor pyrazabole derivatives for multiphoton absorption Dalton Trans. 42 4340

    Article  CAS  PubMed  Google Scholar 

  22. Misra R, Jadhav T and Mobin S M 2014 Ferrocenyl pyrazaboles: design, synthesis, structure, and properties Dalton Trans. 43 2013

    Article  CAS  PubMed  Google Scholar 

  23. Massue J, Frath D, Retailleau P, Ulrich G and Ziessel R 2013 Synthesis of Luminescent Ethynyl-Extended Regioisomers of Borate Complexes Based on 2-(2\(^{\prime }\)-Hydroxyphenyl)benzoxazole Chem. Eur. J. 19 5375

    Article  CAS  PubMed  Google Scholar 

  24. Frath D, Azizi S, Ulrich G and Ziessel R 2012 Chemistry on Boranils: An Entry to Functionalized Fluorescent Dyes Org. Lett. 14 4774

    Article  CAS  PubMed  Google Scholar 

  25. Frath D, Azizi S, Ulrich G, Retailleau P and Ziessel R 2011 Facile Synthesis of Highly Fluorescent Boranil Complexes Org. Lett. 13 3414

    Article  CAS  PubMed  Google Scholar 

  26. Berezin M Y and Achilefu S 2010 Fluorescence Lifetime Measurements and Biological Imaging Chem. Rev. 110 2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao H, Li Y, Wang L, Ji C, Wang Y, Tian W, Yanga X and Yin L 2014 High performance asymmetrical push–pull small molecules end-capped with cyanophenyl for solution-processed solar cells Chem. Commun. 50 10251

    Article  CAS  Google Scholar 

  28. Rosenblum M, Brawn N, Papenmeier J and Applebaum M 1966 Synthesis of ferrocenylacetylenes J. Organomet. Chem. 7 193

    Google Scholar 

  29. Dhokale B, Jadhav T, Patil Y and Misra R 2016 Symmetrical and unsymmetrical ferrocenyl perylenediimides: Design, synthesis and properties Dyes Pigments 134 164

    Article  CAS  Google Scholar 

  30. Dhokale B, Gautam P and Misra R 2012 Donor–acceptor perylenediimide–ferrocene conjugates: synthesis, photophysical, and electrochemical properties Tetrahedron Lett. 53 2352

    Article  CAS  Google Scholar 

  31. Kollmannsberger M, Rurack K, Resch-Genger U and Daub J 1998 Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation: A New Design Concept for Highly Sensitive Fluorescent Probes J. Phys. Chem. A 102 10211

    Article  CAS  Google Scholar 

  32. Mohammed O F and Sarhan A A O 2010 Ultrafast excited-state dynamics of ferrocene-bridge-acceptor system Chem. Phys. 372 17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from SERB (EMR/2015/000779), Govt. of India, is greatly acknowledged. NM thanks IIT Gandhinagar for the fellowship and infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iti Gupta.

Additional information

Special Issue on Modern Trends in Inorganic Chemistry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 879 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manav, N., Tyagi, A., Pandey, V. et al. Ferrocene and triphenylamine appended boranils. J Chem Sci 130, 79 (2018). https://doi.org/10.1007/s12039-018-1490-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1490-8

Keywords

Navigation