A review on transition-metal mediated synthesis of quinolines

  • Rashmi Sharma
  • Parteek Kour
  • Anil Kumar
Review Article


Quinoline is one of the important class of heterocyclic compounds which have gained considerable importance because of its high pharmaceutical efficacy and broad range of biological activities such as anti-cancer, anti-malarial, anti-microbial and anti-asthmatic. As a consequence, the desire for new versatile and efficient route for the synthesis of quinoline scaffolds remains an active and growing area of interest both in academia and industry. However, developments of transition-metal catalyzed synthetic methods have witnessed a dominant position over the past few years for the synthesis of diverse range of complex heterocyclics containing quinoline scaffolds. This review specifically provides an overview of the literature available on the transition–metal catalyzed synthetic methodologies for the synthesis of polysubstituted quinoline derivatives.

Graphical Abstract

Synopsis This review presents a systematic and comprehensive literature survey on the transition metal catalyzed synthesis of polysubstituted quinolines: A versatile building block of several biologically significant heterocycles and natural products.


Heterocycles quinolines transition-metal catalyst synthetic protocols biological activities 



R. S. thanks SMVD University for fellowship.


  1. 1.
    (a) Zhao Y-L, Chen Y-L, Chang F-S and Tzeng C-C 2005 Synthesis and cytotoxic evaluation of certain 4-anilino-2-phenylquinoline derivatives Eur. J. Med. Chem. 40 792; (b) Upadhayaya R S, Vandavasi J K, Vasireddy N R, Sharma V, Dixit S S and Chattopadhyaya J 2009 Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis Bioorg. Med. Chem. 17 2830; (c) Shashikumar N D, Krishnamurthy G, Bhojyanaik H S, Lokesh M R and Jithendrakumara K S 2014 Synthesis of new biphenyl-substituted quinoline derivatives, preliminary screening and docking studies J. Chem. Sci. 126 205; (d) Faidallah H M, Khan K A and Asiri A M 2012 Synthesis of some new 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[\(h\)]quinoline-3-carbonitriles and their biological evaluation as cytotoxic and antiviral agents J. Chem. Sci. 124 625Google Scholar
  2. 2.
    (a) Jiang P, Zhu W, Gan Z, Huang W, Li J, Zeng H and Shi J 2009 Electron transport properties of an ethanol-soluble \(\text{AlQ}_{3}\)-based coordination polymer and its applications in OLED devices J. Mater. Chem. 19 4551; (b) Liang F, Xie Z, Wang L, Jing X and Wang F 2002 New PPV oligomers containing 8-substituted quinoline for light-emitting diodes Tetrahedron Lett. 43 3427; (c) Ebenso E E, Obot I B and Murulana L C 2010 Quinoline and its derivatives as effective corrosion inhibitors for mild steel in acidic medium Int. J. Electrochem. Sci. 5 1574Google Scholar
  3. 3.
    (a) Sridhar P, Alagumuthu M, Arumugam S and Reddy S R 2016 Synthesis of quinoline acetohydrazide-hydrazone derivatives evaluated as DNA gyrase inhibitors and potent antimicrobial agents RSC Adv. 6 64460; (b) Devi K, Asmat Y, Agrawal M, Sharma S and Dwivedi J 2013 Synthesis and evaluation of some novel precursors of oxozolidinone analogues of chloroquinoline for their antimicrobial and cytotoxic potential J. Chem. Sci. 125 1093; (c) Desai N C, Rajpara K M, Joshi V V, Vaghani H V and Satodiya H M 2013 Synthesis, characterisation and antimicrobial screening of hybrid molecules containing quinoline, pyrimidine and morphine analogues J. Chem. Sci. 125 321; (d) Zhang G-F, Zhang S, Pan B, Liu X and Feng L-S 2018 4-Quinolone derivatives and their activities against Gram positive pathogens Eur. J. Med. Chem. 143 710Google Scholar
  4. 4.
    (a) Marganakop S B, Kamble R R, Hoskeri J, Prasad D J and Meti G Y 2014 Facile synthesis of novel quinoline derivatives as anticancer agents Med. Chem. Res. 23 2727; (b) Lee E, Han S, Jin G H, Lee H J, Kim W-Y, Ryu J-H and Jeon R 2013 Synthesis and anticancer activity of aminodihydroquinoline analogs: Identification of novel proapoptotic agents Bioorg. Med. Chem. Lett. 23 3976; (c) Gopal M, Shahabuddin M S and Inamdar S V 2002 Interaction between an 8-Methoxypyrimido [4’,5’:4,5]thieno(2,3-b) quinoline-4(3H)one antitumour drug and deoxyribonucleic acid J. Chem. Sci. 114 687Google Scholar
  5. 5.
    (a) Insuasty B, Montoya A, Becerra D, Quiroga J, Abonia R, Robledo S, Vélez I D, Upegui Y, Nogueras M and Cobo J 2013 Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents Eur. J. Med. Chem. 67 252; (b) Kumar A, Srivastava K, Kumar S R, Puri S K and Chauhan P M S 2010 Synthesis of new 4-aminoquinolines and quinoline–acridine hybrids as antimalarial agents Bioorg. Med. Chem. Lett. 20 7059; (c) Pretorius S I, Breytenbach W J, Kock C, Smith P J and N’Da D D 2013 Synthesis, characterization and antimalarial activity of quinoline–pyrimidine hybrids Bioorg. Med. Chem. Lett. 21 269; (d) Kaur K, Jain M, Reddy R P and Jain R 2010 Quinolines and structurally related heterocycles as antimalarials Eur. J. Med. Chem. 45 3245Google Scholar
  6. 6.
    (a) Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S and Sohda T 1996 Studies on disease-modifying antirheumatic drugs: Synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect J. Med. Chem. 39 5176; (b) Bekhit A A, El-Sayed O A, Aboulmagd E and Park J Y 2004 Tetrazolo[1,5-\(a\)]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents Eur. J. Med. Chem. 39 249Google Scholar
  7. 7.
    Hu H-Y and Chen C-F 2006 A new fluorescent chemosensor for anion based on an artificial cyclic tetrapeptide Tetrahedon Lett. 47 175CrossRefGoogle Scholar
  8. 8.
    Aly M R E, Ibrahim M M, Okael A M and Gherbawy Y A M H 2014 Synthesis, insecticidal, and fungicidal screening of some new quinoline derivatives Russ. J. Bioorg. Chem. 40 214CrossRefGoogle Scholar
  9. 9.
    Całus S, Gondek E, Danel A, Jarosz B, Pokładko M and Kityk A V 2007 Electroluminescence of 6-R-1,3-diphenyl-1\(H\)-pyrazolo[3,4-\(b\)]quinoline-based organic light-emitting diodes (R = F, Br, Cl, \(\text{ CH }_{3}\), \(\text{ C }_{2}\text{ H }_{3}\) and N(\(\text{ C }_{6}\text{ H }_{5})_{2})\) Mater. Lett. 61 3292CrossRefGoogle Scholar
  10. 10.
    Caeiro G, Lopes J M, Magnoux P, Ayrault P and Ribeiro F R 2007 A FT-IR study of deactivation phenomena during methylcyclohexane transformation on H-USY zeolites: Nitrogen poisoning, coke formation, and acidity–activity correlations J. Catal. 249 234CrossRefGoogle Scholar
  11. 11.
    Michael J P 2008 Quinoline, quinazoline and acridone alkaloids Nat. Prod. Rep. 25 166CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Khalil S, Alkofahi A, El-Eisawi D and Al-Shibib A 1998 Transtorine, a New Quinoline Alkaloid from Ephedra transitoria J. Nat. Prod. 61 262CrossRefPubMedGoogle Scholar
  13. 13.
    Wright C W, Addae-Kyereme J, Breen A G, Brown J E, Cox M F, Croft S L, Gökçek Y, Kendrick H, Phillips R M and Pollet P L 2001 Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents J. Med. Chem. 44 3187CrossRefPubMedGoogle Scholar
  14. 14.
    Achan J, Talisuna A O, Erhart A, Yeka A, Tibenderana J K, Baliraine F N, Rosenthal P J and D’Alessandro U 2011 Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria Malar. J. 10 144CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fokialakis N, Magiatis P, Chinou I, Mitaku S and Tillequin F 2002 Megistoquinones I and II, two quinoline alkaloids with antibacterial activity from the bark of Sarcomelicope megistophylla Chem. Pharm. Bull. 50 413CrossRefPubMedGoogle Scholar
  16. 16.
    Ratheesh M, Sindhu G and Helen A 2013 Anti-inflammatory effect of quinoline alkaloid skimmianine isolated from Ruta graveolens L Inflamm. Res.  62 367CrossRefPubMedGoogle Scholar
  17. 17.
    (a) Bringmann G, Reichert Y and Kane V V 2004 The total synthesis of streptonigrin and related antitumor antibiotic natural products Tetrahedron 60 3539; (b) Zhu C, Ma X, Hu Y, Guo L, Chen B, Shen K and Xiao Y 2016 Safety and efficacy profile of lenvatinib in cancer therapy: A systematic review and meta-analysis Oncotarget 7 44545Google Scholar
  18. 18.
    Foley M and Tilley L 1998 Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents Pharmacol. Ther. 79 55CrossRefPubMedGoogle Scholar
  19. 19.
    (a) ter Kuile F O, Nosten F, Thieren M, Luxemburger C, Edstein M D, Chongsuphajaisiddhi T, Phaipun L, Webster H K and White N J 1992 High-dose mefloquine in the treatment of multidrug-resistant falciparum malaria J. Infect. Dis. 166 1393; (b) Schlagenhauf P 1999 Mefloquine for malaria chemoprophylaxis 1992–1998: A review J. Travel Med. 6 122Google Scholar
  20. 20.
    Kaur K, Jain M, Reddy R P and Jain R 2010 Quinolines and structurally related heterocycles as antimalarials Eur. J. Med. Chem. 45 3245CrossRefGoogle Scholar
  21. 21.
    (a) Wall M E, Wani M C, Cook C E, Palmer K H, McPhail A T and Sim G A 1966 Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata J. Am. Chem. Soc. 88 3888; (b) Mukherjee A K, Basu S, Sarkar N and Ghosh A C 2001 Advances in cancer therapy with plant based natural products Curr. Med. Chem. 8 1467; (c) Fuchs C, Mitchell E P and Hoff P M 2006 Irinotecan in the treatment of colorectal cancer Cancer Treat. Rev. 32 491; (d) Garst J 2007 Topotecan: An evolving option in the treatment of relapsed small cell lung cancer Ther. Clin. Risk Manag. 3 1087; (e) Fallahi P, Ferrari S M, Bari F D, Materazzi G, Benvenga S, Miccoli P and Antonelli A 2015 Cabozantinib in thyroid cancer recent patents on Anticancer Drug Discov. 10 259; (f) Vaishampayan U 2013 Cabozantinib as a novel therapy for renal cell carcinoma Curr. Oncol. Rep. 15 76Google Scholar
  22. 22.
    Afzal O, Kumar S, Haider M R, Ali M R, Kumar R, Jaggi M and Bawa S 2015 A review on anticancer potential of bioactive heterocycle quinoline Eur. J. Med. Chem. 97 871CrossRefPubMedGoogle Scholar
  23. 23.
    (a) Bisacchi G S 2015 Origins of the quinolone class of antibacterials: An expanded “discovery story” J. Med. Chem. 58 4874; (b) Aubier M, Lode H, Gialdroni-Grassi G, Huchon G, Hosie J, Legakis N, Regamey C, Segev S, Vester R, Wijnands W J and Tolstuchow N 1996 Sparfloxacin for the treatment of community-acquired pneumonia: A pooled data analysis of two studies J. Antimicrob. Chemother. 37 73Google Scholar
  24. 24.
    Zhanel G G, Ennis K, Vercaigne L, Walkty A, Gin A S, Embil J, Smith H and Hoban D J 2002 A critical review of the fluoroquinolones Drugs 62 13CrossRefPubMedGoogle Scholar
  25. 25.
    Kumar S, Bawa S and Gupta H 2009 Biological activities of quinoline derivatives Mini-Rev. Med. Chem. 9 1648CrossRefPubMedGoogle Scholar
  26. 26.
    (a) Trost B M and Crawley M L 2003 Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis Chem. Rev. 103 2921; (b) D’Souza D M and Muller T J J 2007 Multi-component syntheses of heterocycles by transition-metal catalysis Chem. Soc. Rev. 36 1095Google Scholar
  27. 27.
    (a) Bharate J B, Vishwakarma R A and Bharate S B 2015 Metal-free domino one-pot protocols for quinoline synthesis RSC Adv. 5 42020; (b) Kouznetsov V V, Méndez L Y V and Gómez C M M 2005 Recent progress in the synthesis of quinolines Curr. Org. Chem. 9 141Google Scholar
  28. 28.
    (a) Kharb R and Kaur H 2013 Therapeutic significance of quinoline derivatives as antimicrobial agents Int. Res. J. Pharm. 4 63; (b) Krishnal S and White N J 1996 Pharmacokinetics of quinine, chloroquine and amodiaquine Clin. Pharmacokinet. 30 263Google Scholar
  29. 29.
    Kour P, Kumar A, Sharma R, Chib R, Khan I A and Rai V K 2017 Synthesis of 2-amino-4H-chromen-4-ylphosphonates and \(\beta \)-phosphonomalonates via tandem Knoevenagel Phospha-Michael reaction and antimicrobial evaluation of newly synthesized \(\beta \)-phosphonomalonates Res. Chem. Intermed. 43 7319CrossRefGoogle Scholar
  30. 30.
    Zhong M, Sun S, Cheng J and Shao Y 2016 Iron-catalyzed cyclization of nitrones with geminal-substituted vinyl acetates: A direct [4 + 2] assembly strategy leading to 2,4-disubstituted quinolines J. Org. Chem. 81 10825CrossRefPubMedGoogle Scholar
  31. 31.
    Yan R, Liu X, Pan C, Zhou X, Li X, Kang X and Huang G 2013 Aerobic synthesis of substituted quinoline from aldehyde and aniline: Copper-catalyzed intermolecular C-H active and C-C formative cyclization Org. Lett. 15 4876CrossRefPubMedGoogle Scholar
  32. 32.
    Pang X, Wu M, Ni J, Zhang F, Lan J, Chen B and Yan R 2017 Copper-catalyzed tandem aerobic oxidative cyclization for the synthesis of polysubstituted quinolines via C\((\text{ sp }^{3})/\text{ C }(\text{ sp }^{2})\)-H bond functionalization J. Org. Chem. 82 10110CrossRefPubMedGoogle Scholar
  33. 33.
    Mondal R R, Khamarui S and Maiti D K 2016 CuBr-\(\text{ ZnI }_{2}\) combo-catalysis for mild \(\text{ Cu }^{{\rm I}}\)-\(\text{ Cu }^{{\rm III}}\) Switching and \(\text{ sp }^{2}\) C-H activated rapid cyclization to quinolines and their sugar-based chiral analogues: A UV–Vis and XPS study ACS Omega 1 251CrossRefGoogle Scholar
  34. 34.
    Luo X-L, Liu X-X, Pu J-H, Tian W-F, Zhou X-Q, Wei D-D and Huang G-S 2017 Palladium-catalyzed aerobic oxidative synthesis of 3-phenylquinoline with azides and aldehydes ChemistrySelect  2 8658CrossRefGoogle Scholar
  35. 35.
    Nikolaev A, Nithiy N and Orellana A 2014 One-step synthesis of quinolines via palladium-catalyzed cross-coupling of cyclopropanols with unprotected ortho-bromoanilines Synlett 25 2301CrossRefGoogle Scholar
  36. 36.
    Selvakumar K, Lingam K A P, Varma R V L and Vijayabaskar V 2015 Controlled and efficient synthesis of quinoline derivatives from Morita–Baylis–Hillman adducts by palladium-catalyzed heck reaction and cyclization Synlett 26 646CrossRefGoogle Scholar
  37. 37.
    Gao G-L, Niu Y-N, Yan Z-Y, Wang H-L, Wang G-W, Shaukat A and Liang Y-M 2010 Unexpected domino reaction via Pd-catalyzed sonogashira coupling of benzimidoyl chlorides with 1,6-enynes and cyclization to synthesize quinoline derivatives J. Org. Chem. 75 1305CrossRefPubMedGoogle Scholar
  38. 38.
    Liu B, Gao H, Yu Y, Wu W and Jiang H 2013 Palladium-catalyzed intermolecular aerobic oxidative cyclization of 2-ethynylanilines with isocyanides: Regioselective synthesis of 4-halo-2-aminoquinolines J. Org. Chem78 10319CrossRefPubMedGoogle Scholar
  39. 39.
    Tan Z, Jiang H and Zhang M 2016 Ruthenium-catalyzed dehydrogenative \(\beta \)-benzylation of 1, 2, 3, 4-tetrahydroquinolines with aryl aldehydes: Access to functionalized quinolines Org. Lett. 18 3174CrossRefPubMedGoogle Scholar
  40. 40.
    Hu L, Gui W, Liu Z and Jiang B 2014 Synthesis of 3-aryl-2-aminoquinolines: Palladium catalyzed cascade reactions of gem-dibromovinylanilines with tert-butyl isocyanide and arylboronic acids RSC Adv. 4 38258CrossRefGoogle Scholar
  41. 41.
    Patil S S, Patil S V and Bobade V D 2011 Synthesis of aminoindolizine and quinoline derivatives via \(\text{ Fe(acac) }_{3}\)/TBAOH-catalyzed sequential cross-coupling-cycloisomerization reactions Synlett 16 2379Google Scholar
  42. 42.
    Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Anvar S and Mirjafari A 2010 Microwave-promoted alkynylation–cyclization of 2-aminoaryl ketones: a green strategy for the synthesis of 2,4-disubstituted quinolines Synlett 20 3104CrossRefGoogle Scholar
  43. 43.
    Huma H Z S, Halder R, Kalra S S, Das J and Iqbal J 2002 Cu(I)-catalyzed three component coupling protocol for the synthesis of quinoline derivatives Tetrahedron Lett. 43 6485CrossRefGoogle Scholar
  44. 44.
    Huang H, Jiang H, Chen K and Liu H 2009 A Simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature J. Org. Chem. 74 5476CrossRefPubMedGoogle Scholar
  45. 45.
    Zeing Z, Deng G and Liang Y 2016 Synthesis of quinolines through copper-catalyzed intermolecular cyclization reaction from anilines and terminal acetylene esters RSC Adv. 6 103478CrossRefGoogle Scholar
  46. 46.
    Liu P, Li Y, Wang H, Wang Z and Hu X 2012 Synthesis of substituted quinolines by iron-catalyzed oxidative coupling reactions Tetrahedron Lett. 53 6654CrossRefGoogle Scholar
  47. 47.
    Xu X, Zhang X, Liu W, Zhao Q, Wang Z, Yu L and Shi F 2015 Synthesis of 2-substituted quinolines from alcohols Tetrahedron Lett. 56 3790CrossRefGoogle Scholar
  48. 48.
    Maizuru N, Inami T, Kurahashi T and Matsubara S 2011 Nickel-catalyzed cycloadditions of benzoxazinones with alkynes: Synthesis of quinolines and quinolones Chem. Lett. 40 375CrossRefGoogle Scholar
  49. 49.
    Korivi R P and Cheng C-H 2006 Nickel-catalyzed cyclization of 2-iodoanilines with aroylalkynes: An efficient route for quinoline derivatives J. Org. Chem. 71 7079CrossRefPubMedGoogle Scholar
  50. 50.
    Sarode P B, Bahekar S P and Chandak H S 2016 \(\text{ Zn } \text{(OTf) }_{ 2}\)-mediated C-H activation: An expeditious and solvent-free synthesis of aryl/alkyl substituted quinolines Tetrahedron Lett. 57 5753CrossRefGoogle Scholar
  51. 51.
    Zheng J, Li Z, Huang L, Wu W, Li J and Jiang H 2016 Palladium-catalyzed intermolecular aerobic annulation of \(o\)-alkenylanilines and alkynes for quinoline synthesis Org. Lett. 18 3514CrossRefPubMedGoogle Scholar
  52. 52.
    Song G, Gong X and Li X 2011 Synthesis of quinolines via Rh(III)-catalyzed oxidative annulation of pyridines J. Org. Chem. 76 7583CrossRefPubMedGoogle Scholar
  53. 53.
    Kumar G S, Kumar P and Kapur M 2017 Traceless directing-group strategy in the ru-catalyzed, formal [3 + 3] annulation of anilines with allyl alcohols: a one-pot, domino approach for the synthesis of quinolines Org. Lett. 19 2494CrossRefPubMedGoogle Scholar
  54. 54.
    Xu J, Sun J, Zhao J, Huang B, Li X and Sun Y 2017 Palladium-catalyzed synthesis of quinolines from allyl alcohols and anilines RSC Adv. 7 36242CrossRefGoogle Scholar
  55. 55.
    Mastalir M, Glatz M, Pittenauer E, Allmaier G and Kirchner K 2016 Sustainable synthesis of quinolines and pyrimidines catalyzed by manganese PNP pincer complexes J. Am. Chem. Soc. 138 15343CrossRefGoogle Scholar
  56. 56.
    Wang R, Fan H, Zhao W and Li F 2016 Acceptorless dehydrogenative cyclization of \(o\)-aminobenzyl alcohols with ketones to quinolines in water catalyzed by water-soluble metal-ligand bifunctional catalyst [Cp*(6,6’-\((\text{ OH })_{2}\text{ bpy }\))(\(\text{ H }_{2}\text{ O }\))]\([\text{ OTf }]_{2}\) Org. Lett18 3558CrossRefPubMedGoogle Scholar
  57. 57.
    Chen S-J, Lu G-P and Cai C 2015 Synthesis of quinolines from allylic alcohols via iridium-catalyzed tandem isomerization/cyclization combined with potassium hydroxide Synthesis 47 976CrossRefGoogle Scholar
  58. 58.
    Motokura K, Mizugaki T, Ebitani K and Kaneda K 2004 Multifunctional catalysis of a Ruthenium-grafted hydrotalcite: One-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and Aldol reaction Tetrahedron Lett. 45 6029CrossRefGoogle Scholar
  59. 59.
    Cho C S, Kim B T, Kim T-J and Shim S C 2001 Ruthenium-catalyzed oxidative cyclisation of 2-aminobenzyl alcohol with ketones: Modified Friedlaender quinoline synthesis Chem. Commun. 24 2576Google Scholar
  60. 60.
    Li H-J, Wang C-C, Zhu S, Dai C-Y and Wu Y-C 2015 Ruthenium(II)-catalyzed hydrogen transfer/annulation cascade processes between alcohols and 2-nitrobenzaldehydes Adv. Synth. Catal. 357 583CrossRefGoogle Scholar
  61. 61.
    Anand N, Chanda T, Koley S, Chowdhury S and Singh M S 2015 \(\text{ CuSO }_{4}\)-D-glucose an inexpensive and eco-efficient catalytic system: Direct access to diverse quinolines through modified Friedländer approach involving \(\text{ S }_{N}\text{ Ar }\)/reduction/annulation cascade in one-pot RSC Adv. 5 7654CrossRefGoogle Scholar
  62. 62.
    Soleimani E, Khodaei M M, Batooie N and Samadi S 2010 An efficient approach to quinolines via Friedländer synthesis catalyzed by cuprous triflate Chem. Pharm. Bull. 58 212CrossRefPubMedGoogle Scholar
  63. 63.
    Cho C S, Ren W X and Yoon N S 2009 A recyclable copper catalysis in modified Friedländer quinoline synthesis J. Mol. Catal. A 299 117CrossRefGoogle Scholar
  64. 64.
    Mierde H V, Ledoux N, Allaert B, Voort P V D, Drozdzak R, Vos D D and Verpoort F 2007 Improved ruthenium catalysts for the modified Friedlaender quinoline synthesis New J. Chem. 31 1572CrossRefGoogle Scholar
  65. 65.
    Cho C S and Ren W X 2007 A recyclable palladium-catalyzed modified Friedlander quinoline synthesis J. Organometal. Chem. 692 4182CrossRefGoogle Scholar
  66. 66.
    Cho C S, Ren W X and Shim S C 2006 A copper(II)-catalyzed protocol for modified Friedlander quinoline synthesis Tetrahedron Lett. 47 6781CrossRefGoogle Scholar
  67. 67.
    De S K and Gibbs R A 2005 A mild and efficient one-step synthesis of quinolines Tetrahedron Lett. 46 1647CrossRefGoogle Scholar
  68. 68.
    Cho C S, Ren W X and Shim S C 2005 Synthesis of quinolines via Pd/C-catalyzed cyclization of 2-aminobenzyl alcohol with ketones Bull. Korean Chem. 26 1286CrossRefGoogle Scholar
  69. 69.
    Cho C S, Seok H J and Shim S C 2005 A Rhodium-catalyzed route for oxidative coupling and cyclization of 2-aminobenzyl alcohol with ketones leading to quinolines J. Heterocycl. Chem. 42 1219CrossRefGoogle Scholar
  70. 70.
    Taguchi K, Sakaguchi S and Ishii Y 2005 Synthesis of quinolines from amino alcohol and ketones catalyzed by \([\text{ IrCl(cod) }]_{2}\) or \(\text{ IrCl }_{3}\) under solvent-free conditions Tetrahedron Lett. 46 4539CrossRefGoogle Scholar
  71. 71.
    McNaughton B R and Miller B L 2003 A mild and efficient one-step synthesis of quinolines Org. Lett. 5 4257CrossRefPubMedGoogle Scholar
  72. 72.
    Monrad R N and Madsen R 2011 Ruthenium-catalyzed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols Org. Biomol. Chem. 9 610CrossRefPubMedGoogle Scholar
  73. 73.
    Jin J, Guidi S, Abada Z, Amara Z, Selva M, George M W and Pdiakoff M 2017 Continuous Niobium phosphate catalyzed Skraup reaction for quinoline synthesis from solketal Green Chem. 19 2439CrossRefGoogle Scholar
  74. 74.
    Horn J, Marsden S P, Nelson A, House D and Weingarten G G 2008 Convergent, regiospecific synthesis of quinolines from \(o-\)aminophenylboronates Org. Lett. 10 4117Google Scholar
  75. 75.
    Khan S and Volla C M R 2017 Cu-catalyzed cascade cyclization of isothiocyanates, alkynes and diaryliodonium salts: Access to diversely functionalized quinolines Chem. Eur. J. 23 12462CrossRefPubMedGoogle Scholar
  76. 76.
    Tiwari D K, Phanindrudu M, Wakade S B, Nanubolu J B and Tiwari D K 2017 \(\alpha \),\(\beta \)-Functionalization of saturated ketones with anthranils via Cu-catalyzed sequential dehydrogenation/aza-Michael addition/annulation cascade reactions in one-pot Chem. Commun. 53 5302CrossRefGoogle Scholar
  77. 77.
    Xia X-F, Zhang G-W, Wang D and Zhu S-L 2017 Visible-light induced and oxygen-promoted oxidative cyclization of aromatic enamines for the synthesis of quinolines derivatives J. Org. Chem. 82 8455CrossRefPubMedGoogle Scholar
  78. 78.
    Chi Y, Yan H, Zhang W-X and Xi Z 2017 Synthesis of quinoline derivatives via Cu-catalyzed cascade annulation of heterocumulenes, alkynes, and diaryliodonium salts Org. Lett. 19 2694CrossRefPubMedGoogle Scholar
  79. 79.
    Carrel-Menoyo A, Ortiz-de-Elguea V, Martinez-Nunes M, Sotomayor N and Lete E 2017 Palladium-catalyzed dehydrogenative coupling: An efficient synthetic strategy for the construction of the quinoline core Mar. Drugs 15 276CrossRefGoogle Scholar
  80. 80.
    Zhang X, Liu W, Sun R, Xu X, Wang Z and Yan Y 2016 Silver-catalyzed three-component approach to quinolines starting from anilines, aldehydes, and alcohols Synlett 27 1563CrossRefGoogle Scholar
  81. 81.
    Yao R, Rong G, Yan B, Qiu L and Xu X 2016 Dual-functionalization of alkynes via copper-catalyzed carbene/alkyne metathesis: A direct access to the 4-carboxyl quinolines ACS Catal. 6 1024CrossRefGoogle Scholar
  82. 82.
    Chen W, Ding Q, Nie Z and Peng Y 2016 Synthesis of 2-trifluoromethylquinolines via copper-mediated intramolecular oxidative cyclization of N-(2-alkenylaryl) enamines RSC Adv. 6 48767CrossRefGoogle Scholar
  83. 83.
    Xu X, Liu W, Wang Z, Feng Y, Yan Y and Zhang X 2016 Silver-catalyzed one-step synthesis of multiply substituted quinolines Tetrahedron Lett. 57 226CrossRefGoogle Scholar
  84. 84.
    Yang X, Li L, Li Y and Zhang Y 2016 Visible-light-induced photocatalytic aerobic oxidative \(\text{ Csp }^{3}\)-H functionalization of glycine derivatives: Synthesis of substituted quinolines J. Org. Chem. 81 12433CrossRefPubMedGoogle Scholar
  85. 85.
    Neuhaus J D, Morrow S M, Brunavs M and Wills M C 2016 Diversely substituted quinolines via rhodium-catalyzed alkyne hydroacylation Org. Lett. 18 1562CrossRefPubMedGoogle Scholar
  86. 86.
    Iosub A V and Stahl S S 2015 Catalytic aerobic dehydrogenation of nitrogen heterocycles using heterogeneous cobalt oxide supported on nitrogen-doped carbon Org. Lett. 17 4404CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kong L, Zhou Y, Huang H, Yang Y, Liu Y and Li Y 2015 Copper-catalyzed synthesis of substituted quinolines via C-N coupling/condensation from ortho-acylanilines and alkenyl iodides J. Org. Chem. 80 1275CrossRefPubMedGoogle Scholar
  88. 88.
    Jiang B, Hu L and Gui W 2014 Facile synthesis of 2-amino-3-bromoquinolines by palladium-catalyzed isocyanide insertion and cyclization of gem-dibromovinylanilines RSC Adv. 4 13850CrossRefGoogle Scholar
  89. 89.
    Senadi G C, Hu W-P, Garkhedkar A M, Boominathan S S K and Wang J-J 2015 Palladium(II)-catalyzed regioselective synthesis of 3,4-disubstituted quinolines and 2,3,5-trisubstituted pyrroles from alkenes via anti-Markovnikov selectivity Chem. Commun. 51 13795CrossRefGoogle Scholar
  90. 90.
    Zhang Y, Wang M, Li P and Wang L 2012 Iron-promoted tandem reaction of anilines with styrene oxides via C-C cleavage for the synthesis of quinolines Org. Lett. 14 2206CrossRefPubMedGoogle Scholar
  91. 91.
    Toh K K, Sanjaya S, Sahnoun S, Chong S Y and Chiba S 2012 Copper-catalyzed aerobic intramolecular carbo- and amino-oxygenation of alkynes for synthesis of azaheterocycles Org. Lett. 14 2290CrossRefPubMedGoogle Scholar
  92. 92.
    Patil N T, Raut V S, Shinde V S, Gayatri G and Shastry G N 2012 Gold(I)-catalyzed unprecedented rearrangement reaction between 2-aminobenzaldehydes with propargyl amines: An expedient route to 3-aminoquinolines Chem. Eur. J. 18 5530CrossRefPubMedGoogle Scholar
  93. 93.
    Sakai N, Tamura K, Shimamura K, Ikeda R and Konakahara T 2012 Copper-catalyzed [5+1] annulation of 2-ethynylanilines with an N,O-acetal leading to construction of quinoline derivatives Org. Lett. 14 836CrossRefPubMedGoogle Scholar
  94. 94.
    Wang Z, Li S, Yu B, Wu H, Wang Y and Sun X 2012 \(\text{ FeCl }_{3}\cdot 6\text{ H }_{2}\text{ O }\)-Catalyzed intramolecular allylic amination: Synthesis of substituted dihydroquinolines and quinolines J. Org. Chem. 77 8615CrossRefPubMedGoogle Scholar
  95. 95.
    Xing R-G, Li Y-N, Liu Q, Han Y-F, Wei X, Li J and Zhou B 2011 Selective reduction of nitroarenes by a hantzsch 1,4-dihydropyridine: A facile and efficient approach to substituted quinolines Synthesis 13 2066Google Scholar
  96. 96.
    Richter H and Mancheno O G 2011 TEMPO oxoammonium salt-mediated dehydrogenative povarov/oxidation tandem reaction of N-alkyl anilines Org. Lett. 13 6066CrossRefPubMedGoogle Scholar
  97. 97.
    Patil N T and Raut V S 2010 Cooperative catalysis with metal and secondary amine: Synthesis of 2-substituted quinolines via addition/cycloisomerization cascade J. Org. Chem.  75 6961CrossRefPubMedGoogle Scholar
  98. 98.
    Huo Z, Gridnev I D and Yamamoto Y 2010 A method for the synthesis of substituted quinolines via electrophilic cyclization of 1-azido-2-(2-propynyl)benzene J. Org. Chem. 75 1266CrossRefPubMedGoogle Scholar
  99. 99.
    Sarma R and Prajapati D 2008 Ionic liquid—an efficient recyclable system for the synthesis of 2,4-disubstituted quinolines via Meyer–Schuster rearrangement Synlett 19 3001Google Scholar
  100. 100.
    Zhang Z, Tan J and Wang Z 2008 A facile synthesis of 2-methylquinolines via Pd-catalyzed Aza-Wacker oxidative cyclization Org. Lett. 10 173CrossRefPubMedGoogle Scholar
  101. 101.
    Gabriele B, Mancuso R, Salerno G, Ruffolo G and Plastina P 2007 Novel and convenient synthesis of substituted quinolines by copper- or palladium-catalyzed cyclodehydration of 1-(2-aminoaryl)-2-yn-1-ols J. Org. Chem. 72 6873CrossRefPubMedGoogle Scholar
  102. 102.
    Liu X-Y, Ding P, Huang J-S and Che C-M 2007 Synthesis of substituted 1,2-dihydroquinolines and quinolines from aromatic amines and alkynes by gold(I)-catalyzed tandem hydroamination-hydroarylation under microwave-assisted conditions Org. Lett. 9 2645CrossRefPubMedGoogle Scholar
  103. 103.
    Yadav J S, Reddy B V S, Sreedhar P, Rao R S and Nagaiah K 2004 Silver phosphotungstate: A novel and recyclable heteropoly acid for Friedländer quinoline synthesis Synthesis 14 2381CrossRefGoogle Scholar
  104. 104.
    O’Dell D K and Nicholas K M 2003 synthesis of 3-substituted quinolines via transition-metal-catalyzed reductive cyclization of o-nitro Baylis-Hillman acetates J. Org. Chem. 68 6427CrossRefPubMedGoogle Scholar
  105. 105.
    Hatano M and Mikami K 2003 Highly Enantioselective quinoline synthesis via ene-type cyclization of 1,7-enynes catalyzed by a cationic BINAP-palladium(II) complex J. Am. Chem. Soc. 125 4704CrossRefPubMedGoogle Scholar
  106. 106.
    Abbiati G, Arcadi A, Canevari V, Capezzuto L and Rossi E 2005 Palladium-assisted multicomponent synthesis of 2-aryl-4-aminoquinolines and 2-aryl-4-amino[1,8] napthyridines J. Org. Chem. 70 6454CrossRefPubMedGoogle Scholar
  107. 107.
    Anguille S, Brunet J J, Chu N C, Diallo O, Pages C and Vincendeau S 2006 Platinum-catalyzed formation of quinolines from anilines. Aliphatic \(\alpha \)-C-H activation of alkylamines and aromatic ortho-C-H activation of anilines Organometallics 25 2943CrossRefGoogle Scholar
  108. 108.
    Lee H and Yi C S 2016 Catalytic synthesis of substituted indoles and quinolines from the dehydrative C-H coupling of arylamines with 1,2 and 1,3-diols Organometallics 35 1973CrossRefGoogle Scholar
  109. 109.
    Zhang X, Liu B, Shu X, Gao Y, Lv H and Zhu J 2012 Silver mediated C-H activation: Oxidative coupling/cyclization of N-arylimines and alkynes for the synthesis of quinolines J. Org. Chem. 77 501CrossRefPubMedGoogle Scholar
  110. 110.
    Mohsenimehr M, Mamaghani M, Shirini F, Sheykhan M, Abbapour S and Sabet L S 2015 One-pot synthesis of novel pyrimido[4,5-b]quinolines and pyrido[2,3-d:6,5-d\(\prime \)]dipyrimidine using encapsulated-\(\gamma \)-\(\text{ Fe }_{2}\text{ O }_{3}\) nano-particles J. Chem. Sci. 127 1895CrossRefGoogle Scholar
  111. 111.
    Das S, Maiti D and Sarkar S D 2018 Synthesis of polysubstituted quinolines from \(\alpha \)-2-aminoaryl alcohols via Nickel-catalyzed dehydrogenative coupling J. Org. Chem. 83 2309CrossRefPubMedGoogle Scholar
  112. 112.
    Xu X, Yang Y, Zhang X and Yi W 2018 Direct synthesis of quinolines via co(III)-catalyzed and DMSO-involved C-H activation/cyclization of anilines with alkynes Org. Lett. 20 566CrossRefPubMedGoogle Scholar
  113. 113.
    Tan D W, Li H X, Zhu D L, Li H Y, Young D J, Yao J L and Lang J P 2018 Ligand- controlled copper (I)-catalyzed cross-coupling of secondary and primary alcohols to \(\alpha \)-alkylated Ketones, Pyridines and Quinolines Org. Lett. 20 608CrossRefPubMedGoogle Scholar
  114. 114.
    Jadhav S D and Singh A 2017 Oxidative annulations involving DMSO and formamide: \(\text{ K }_{2}\text{ S }_{2}\text{ O }_{8}\) mediated synthesis of Quinolines and Pyrimidines Org. Lett. 19 5673CrossRefPubMedGoogle Scholar
  115. 115.
    Parua S, Sikari R, Sinha S, Das S, Chakraborty G and Paul N D 2018 A Nickel catalyzed acceptorless dehydrogenative approach to quinolines Org. Biomol. Chem. 16 274CrossRefPubMedGoogle Scholar
  116. 116.
    Xu X, Yang Y, Chen X, Zhang X and Yi W 2017 One pot synthesis of Quinolines via Co(III)-catalyzed C-H activation/carbonylation/cyclization of anilines Org. Biomol. Chem. 15 9061CrossRefPubMedGoogle Scholar
  117. 117.
    Ni J, Jiang Y, An Z and Yan R 2018 Cleavage of C-C bonds for the synthesis of \(\text{ C }\_{2}\)-substituted quinolines and indoles by catalyst-controlled tandem annulation of 2-vinylanilines and alkynoates Org. Lett. 20 1534CrossRefPubMedGoogle Scholar
  118. 118.
    Jiang K-M, Kang J-A, Jin Y and Lin J 2018 Synthesis of substituted 4-hydroxyalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts Org. Chem. Front. 5 434CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Synthetic Organic Chemistry Lab., Faculty of SciencesShri Mata Vaishno Devi UniversityKatraIndia

Personalised recommendations