Skip to main content
Log in

Predominantly ligand guided non-covalently linked assemblies of inorganic complexes and guest inclusions

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Various non-covalently linked inorganic self-assemblies formed by the supramolecular interacting sites located at the ligands are discussed. The impetus for this rapidly growing topic on the construction of robust assemblies is elucidated by select examples that are associated with interesting structures and properties. The review includes discussion on the stabilization of different assemblies of nucleobases in the non-covalent assemblies of inorganic complexes. The participation of the guest molecules in the formation of self-assemblies with hosts to make extra space or voids for intake of the guest, water-assisted assemblies, changes in the structures guided by cations, and aggregation-induced photoluminescence in the self-assemblies of metal complexes are presented. Fine-tuning of non-covalent self-assemblies of metal complexes by changing ligands or by other components, which modify the guest recognition abilities is elucidated. The discussions are based on selected examples of self-assemblies that use supramolecular features of peripheral part of ligands or ligand of a complex that helps one to identify templates for weak interactions and for molecular recognition.

Graphical Abstract:

Synopsis. In this review, different types of supramolecular assemblies, inorganic building blocks and host–guest complexes of inorganic complexes are discussed. Different examples are selected from non-covalently linked assemblies, and propensities of directional hydrogen bonds and other weak interactions contributing to material properties and molecular recognitions are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Scheme 1
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Cademartiri L and Bishop K J M 2015 Programmable self-assembly Nat. Mater. 14 2

    Article  CAS  PubMed  Google Scholar 

  2. Desiraju G R, Vittal J J and Ramanan A 2011 Crystal Engineering (Singapore: World Scientific)

    Book  Google Scholar 

  3. Simard M, Su D and Wuest J D 1991 Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers J. Am. Chem. Soc. 113 4696

    Article  CAS  Google Scholar 

  4. Ermer O 1988 Five-fold diamond structure of adamantane-1,3,5,7-tetracarboxylic acid J. Am. Chem. Soc. 110 3747

    Article  CAS  Google Scholar 

  5. Peraka K S, Lusi M, Bajpai A and Zaworotko M J 2017 Crystal engineering approach to generate crystalline inclusion compounds in which 5-hydroxyisophthalic acid serves as a host Cryst. Growth Des. 17 959

    Article  CAS  Google Scholar 

  6. MacNicol D D 1984 Inclusion Compounds (London: Academic Press) Vol. 2, pp. 1–45

  7. Burchell T J, Eisler D J and Puddephatt R J 2006 Hierarchy of hydrogen bonding versus anion binding in self-assembled network structures of silverI Cryst. Growth Des. 6 974

    Article  CAS  Google Scholar 

  8. Kobr L, Zhao K, Shen Y, Comotti A, Bracco S, Shoemaker R K, Sozzani P, Clark N A, Price J C, Rogers C T and Michl J 2012 Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion J. Am. Chem. Soc. 134 10122

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H C, Long J R and Yaghi O M 2012 Introduction to metal–organic frameworks Chem. Rev. 112 673

    Article  CAS  PubMed  Google Scholar 

  10. Zhou H C and Kitagawa S 2014 Metal–organic frameworks MOFs Chem. Soc. Rev. 43 5415

    Article  CAS  PubMed  Google Scholar 

  11. Soares C V, Borges D D, Wiersum A, Martineau C, Nouar F, Llewellyn P L, Ramsahye N A, Serre C, Maurin G and Leitao A A 2016 Adsorption of small molecules in the porous zirconium-based metal organic Framework MIL-140A Zr.: A joint computational-experimental approach J. Phys. Chem. C 120 7192

    Article  CAS  Google Scholar 

  12. Zhang L, Wu G and Jiang J 2014 Adsorption and diffusion of \(\text{ CO }_{2}\) and \(\text{ CH }_{4}\) in zeolitic imidazolate framework-8: effect of structural flexibility J. Phys. Chem. C 118 8788

    Article  CAS  Google Scholar 

  13. Thallapally P K, McGrail B P, Dalgarno S J, Scafe H T, Tian J and Atwood J L 2008 A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide Nat. Mater. 7 146

    CAS  Google Scholar 

  14. Iritani K, Tahara K, De Feyter S and Tobe Y 2017 Host–guest chemistry in integrated porous space formed by molecular self-assembly at liquid–solid interfaces Langmuir 33 4601

    Article  CAS  PubMed  Google Scholar 

  15. Barbour L J, Orr G W and Atwood J L 1998 An intermolecular \(\text{ H }_{2}\text{ O }\). 10 cluster in a solid-state supramolecular complex Nature 393 671

    Article  CAS  Google Scholar 

  16. Das S and Bharadwaj P K 2006 Water clusters gather luminescent zinc(II) complexes around hydrogen-bonded framework structures and associated fluorescence modulation Cryst. Growth Des. 6 187

    Article  CAS  Google Scholar 

  17. Fernandes R R, Kirillov A M, Fatima M, da Silva C G, Ma Z, da Silva J A L, da Silva J J R F and Pombeiro A J L 2008 An infinite two-dimensional hybrid water-chloride network, self-assembled in a hydrophobic terpyridine iron(II) matrix Cryst. Growth Des. 8 782

    Article  CAS  Google Scholar 

  18. Wu L -M, Teng H -B, Feng X -C, Ke X -B, Zhu Q -F, Su J -T, Xu W –J and Hu X -M 2007 Supramolecular networks in crystals of metal(II) complexes with water-soluble salicylaldehyde-2-sulfobenzoylhydrazone anion ligand Cryst. Growth Des. 7 1337

    Article  CAS  Google Scholar 

  19. Chakraborty B and Paine T K 2011 Synthesis and characterization of cobalt(II)-salicylate complexes derived from \(\text{ N }_{4}\)-donor ligands: stabilization of a hexameric water cluster in the lattice host of a cobaltI(II)-salicylate complex. Inorg. Chim. Acta 378 231

    Article  CAS  Google Scholar 

  20. Prasad T K and Rajasekaran M V 2006 A novel water octamer in \([\text{ Cedipic }_{\cdot 2}\text{ H }_{2}\text{ O }_{\cdot 3}]\cdot 4\text{ H }_{2}\text{ O }\): Crystallographic, thermal, and theoretical studies Cryst. Growth Des. 6 488

    Article  CAS  Google Scholar 

  21. Das M C, Maity S B and Bharadwaj P K 2009 Supramolecular association of water molecules forming discrete clusters in the voids of coordination polymers Curr. Opin. Solid State Mater. Sci. 13 76

    Article  CAS  Google Scholar 

  22. Colak T A, Yesilel O Z and Buyukgungor O 2001 Synthesis, structural characterisation of zinc(II)-pyridine-2,5-dicarboxylate complexes and self-assembled 1D water cluster in a supramolecular architecture Polyhedron 29 2127

    Article  CAS  Google Scholar 

  23. Pluth M D and Raymond K N 2007 Reversible guest exchange mechanisms in supramolecular host–guest assemblies Chem. Chem. Soc. Rev. 36 161

    Article  CAS  PubMed  Google Scholar 

  24. Singh D and Baruah J B 2012 Solid state assemblies of cyclic imides tethered hydroxybenzoic acids with pyridine and quinoline: Toward the formation of channels and cavities Cryst. Growth Des. 12 3169

    Article  CAS  Google Scholar 

  25. Davis A V, Yeh R M and Raymond K N 2002 Supramolecular assembly dynamics Proc. Nat. Acad. Sci. USA 99 4793

    Article  CAS  Google Scholar 

  26. Frechet J M J 2002 Dendrimers and supramolecular chemistry Proc. Nat. Acad. Sci. USA 99 4782

    Article  CAS  Google Scholar 

  27. Tarai A and Baruah J B 2016 Anion assisted conformationally guided self-assemblies of multi-component cocrystals of dioxime CrystEngComm 18 5482

    Article  CAS  Google Scholar 

  28. McNaught A D and Wilkinson A 1997 Compendium of chemical terminology; IUPAC recommendations

  29. Nassimbeni L R 2003 Physicochemical aspects of host–guest compounds Acc. Chem. Res. 36 631

    Article  CAS  Google Scholar 

  30. Cram D J and Cram J M 1997 In Container molecules and their guests (London: Royal Society of Chemistry)

    Google Scholar 

  31. Vogtle F 1991 In Supramolecular Chemistry (Chichester: Wiley)

    Google Scholar 

  32. Machadoa V G, Baxter P N W and Lehn J -M 2001 Self-assembly in self-organized inorganic systems: A view of programmed metallosupramolecular architectures J. Braz. Chem. Soc. 12 431

    Google Scholar 

  33. Stang P J and Olenyuk B 1997 Self-assembly, symmetry, and molecular architecture: Coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra Acc. Chem. Res. 30 502

    Article  CAS  Google Scholar 

  34. Hoeben F J M, Jonkheijm P, Meijer E W and Schenning A P H J 2005 About supramolecular assemblies of \(\uppi \)-conjugated systems Chem. Rev. 105 1491

    CAS  Google Scholar 

  35. Lehn J -M 2002 Toward complex matter: Supramolecular chemistry and self-organization Proc. Nat. Acad. Sci. USA 99 4763

    Article  CAS  Google Scholar 

  36. Whitesides G M and Boncheva M 2002 Beyond molecules: Self-assembly of mesoscopic and macroscopic components Proc. Nat. Acad. Sci. USA 99 4769

    Article  CAS  Google Scholar 

  37. Lv J, Liu H and Li Y 2008 Self-assembly and properties of low-dimensional nanomaterials based on \(\uppi \)-conjugated organic molecules Pure. Appl. Chem. 80 639

    Article  CAS  Google Scholar 

  38. Whitesides G M, Mathias J P and Seto C T 1991 Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures Science 254 1312

    Article  CAS  PubMed  Google Scholar 

  39. Adachi T and Ward M D 2016 Versatile and resilient hydrogen-bonded host frameworks. Acc. Chem. Res. 49 2669

    Article  CAS  PubMed  Google Scholar 

  40. Tiekink E R T 2017 Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists Coord. Chem. Rev. 345 209

    CAS  Google Scholar 

  41. Titi H M, Tripuramallu B K and Goldberg I 2016 Porphyrin-based assemblies directed by non-covalent interactions: highlights of recent investigations CrystEngComm 18 3318

    Article  CAS  Google Scholar 

  42. Davis J T and Spada G P 2007 Supramolecular architectures generated by self-assembly of guanosine derivatives Chem. Soc. Rev. 36 296

    Article  CAS  Google Scholar 

  43. Blake A J, Champness N R, Hubberstey P, Li W –S, Withersby M A and Schroder M 1999 Inorganic crystal engineering using self-assembly of tailored building-blocks Coord. Chem. Rev. 183 117

    CAS  Google Scholar 

  44. Das N, Ghosh A, Arif A M and Stang P J 2005 Self-assembly of neutral platinum-based supramolecular ensembles incorporating oxocarbon dianions and oxalate Inorg. Chem. 44 7130

    CAS  Google Scholar 

  45. Friscic T, Mestrovic E, Samec S, Kaitner B and Fabian L 2009 One-pot mechanosynthesis with three levels of molecular self-assembly: Coordination bonds, hydrogen bonds and host–guest inclusion Chem. Eur. J. 15 12644

    Article  CAS  Google Scholar 

  46. Beatty A M 2003 Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes. Coord. Chem. Rev. 246 131

    Article  CAS  Google Scholar 

  47. Beatty A M and Helfrich B A, Hogan G A and Reed B A 2006 Metal-containing dicarboxylic acids as building blocks for lamellar inorganic-organic Hybrid Networks Cryst. Growth Des. 6 122

    Article  CAS  Google Scholar 

  48. Hartshorn C M and Steel P J 1996 Self-Assembly and X-ray structure of a dimetalloparacyclophane incorporating a \(\uppi \)-\(\uppi \) stacked subunit Inorg. Chem. 35 6902

    CAS  Google Scholar 

  49. Litvinov A L, Konarev D V, Kovalevsky A Y, Neretin I S, Coppens P and Lyubovskaya R N 2005 Fullerene complexes with supramolecular zinc tetraphenylporphyrin assemblies: synthesis, crystal Structures, and optical properties Cryst. Growth Des. 5 1807

    Article  CAS  Google Scholar 

  50. Barooah N, Sarma R J and Baruah J B 2006 Metal directed assemblies of a dipeptide: Formation of \(\upbeta \)-pleated sheets Eur. J. Inorg. Chem. 15 2942

    Google Scholar 

  51. Xu F –B, Li Q –S, Zeng X –S, Leng X –B and Zhang Z –Z 2004 Bimetallocyclophanes formed by the \(\uppi \)-\(\uppi \) stacking interaction approach and fluorescent chemosensing behavior Organometallics 23 632

    Article  CAS  Google Scholar 

  52. Fu H L, Po C, Leung S Y and Yam V W 2017 Self-assembled architectures of alkynylplatinum(II) amphiphiles and their structural optimization: A balance of the interplay among \(\text{ Pt }\cdots \text{ Pt }, \uppi -\uppi \) stacking, and hydrophobic–hydrophobic interactions ACS Appl. Mater. Interfaces 9 2786

    Article  CAS  Google Scholar 

  53. Nath B and Baruah J B 2012 Metallacycles of cadmium, mercury dicarboxylates Dalton Trans. 41 7115

    Article  CAS  PubMed  Google Scholar 

  54. Adarsh N N, Chakraborty A, Tarres M, Dey S, Novio F, Chattopadhyay B, Ribas X and Ruiz-Molina D 2017 Ligand and solvent effects in the formation and self-assembly of a metallosupramolecular cage New J. Chem. 41 1179

    CAS  Google Scholar 

  55. Pirondini L, Bertolini F, Cantadori B, Ugozzoli F, Massera C and Dalcanale E 2002 Design and self-assembly of wide and robust coordination cages Proc. Nat. Acad. Sci. USA 99 4911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bania K, Barooah N and Baruah J B 2007 Structural variations in self-assembled cadmium benzoate complexes Polyhedron 26 2612

    Article  CAS  Google Scholar 

  57. Karmakar A, Sarma R J and Baruah J B 2006 Self-assembly of neutral dinuclear and trinuclear zinc-benzoate complexes Inorg. Chem. Commun. 9 1169

    CAS  Google Scholar 

  58. Singh D and Baruah J B 2012 Metal (II) complexes derived from conformation flexible cyclic imides tethered carboxylic acids: syntheses, supramolecular structures, and molecular properties Cryst. Growth Des. 12 2109

    Article  CAS  Google Scholar 

  59. Sanchez-Serratos M, Alvarez J R, Gonzalez-Zamora E and Ibarra I A 2016 Porous coordination polymers PCPs.: new platforms for gas storage Mex. Chem. Soc. 60 43

  60. Marinescu G, Ferlay S, Kyritsakas N and Hosseini M W 2013 Molecular tectonics: from crystals to crystals of crystals Chem. Commun. 49 11209

    CAS  Google Scholar 

  61. Nishio M, Umezawa Y, Fantini J, Weiss M S and Chakrabarti P 2014 CH–\(\uppi \) hydrogen bonds in biological macromolecules Phys. Chem. Chem. Phys. 16 12648

    Article  CAS  Google Scholar 

  62. Takahashi O, Kohno Y and Nishio M 2010 Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab Initio MO calculations Chem. Rev. 110 6049

    CAS  Google Scholar 

  63. Hunter C A and Sanders J K M 1990 The nature of \(\uppi -\uppi \) interactions J. Am. Chem. Soc. 112 5525

    Article  CAS  Google Scholar 

  64. Cozzi F, Cinquini M, Annuziata R and Siegel J S 1993 Dominance of polar/a over charge-transfer effects in stacked phenyl interactions. J. Am. Chem. Soc. 115 5330

    Article  CAS  Google Scholar 

  65. Adams H, Hunter C A, Lawson K R, Perkins J, Spey S E, Urch C J and Sanderson J M 2001 A supramolecular system for quantifying aromatic stacking interactions Chem. Eur. J. 7 4863

    Article  CAS  Google Scholar 

  66. Henkel S, Misuraca M C, Ding Y, Guitet M and Hunter CA 2017 Enhanced chelate cooperativity in polar solvents J. Am. Chem. Soc. 139 6675

    Article  CAS  PubMed  Google Scholar 

  67. Tadokoro M, Kanno H, Kitajima T, Shimada-Umemoto H, Nakanishi N, Isobe K and Nakasuji K 2002 Self-organizing super-structures formed from hydrogen-bonded biimidazolate metal complexes Proc. Nat. Acad. Sci. USA 99 4950

    Article  CAS  Google Scholar 

  68. Murata T, Yakiyama Y, Nakasuji K and Morita Y 2010 Supramolecular architectures and hydrogen-bond directionalities of \(4,4^\prime \)-biimidazole metal complexes depending on coordination geometries Cryst. Growth Des. 10 4898

    Article  CAS  Google Scholar 

  69. Atencio R, Chacon M, Gonzalez T, Briceno A, Agrifoglio G and Sierraalt A 2004 Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of \([\text{ Mbiimidazole }\cdot _{2}\text{ OH }_{2}\cdot _{2}]^{2+}\) \((\text{ M } = \text{ Co }^{2+},\text{ Ni }^{2+})\) complexes and carboxylate modules Dalton Trans. 4 505

    Article  Google Scholar 

  70. Tadokoro M and Nakasuji K 2000 Hydrogen bonded \(2,2^\prime \)-biimidazolate transition metal complexes as a tool of crystal engineering. Coord. Chem. Rev. 198 205

    Article  CAS  Google Scholar 

  71. Sang R –L and Xu L 2006 Counteranion-induced formation of cis and trans singly and doubly \(\text{ H }_{2}\)biim-bridged di-, hexa-, and polymeric \(\text{ Ag }-\text{ H }_{2}\)biim complexes Eur. J. Inorg. Chem. 6 1260

    Google Scholar 

  72. Indumathy R, Weyhermuller T and Nair B U 2010 Biimidazole containing cobaltI(II) mixed ligand complexes: Crystal structure and photonuclease activity Dalton Trans. 39 2087

    Article  CAS  PubMed  Google Scholar 

  73. Hosseini M W 2003 Molecular tectonics: From molecular recognition of anions to molecular networks. Coord. Chem. Rev. 240 157

    Article  CAS  Google Scholar 

  74. Lewis G R and Orpen A G 1998 A metal-containing synthon for crystal engineering: synthesis of the hydrogen bond ribbon polymer \([4,4^\prime -\text{ H }_{2}\text{ bipy }][\text{ MCl }_{4}]\) \((\text{ M } = \text{ Pd }, \text{ Pt })\) Chem. Commun. 17 1873

    Google Scholar 

  75. Mareque-Rivas J C and Brammer L 1998 Self-assembly of 1-D chains of different topologies using the hydro-gen-bonded inorganic supramolecular synthons \(\text{ N }{-}\) \(\text{ H }\) \(\cdots \text{ Cl }\_{2}\text{ M }\) or \(\text{ N }{-}\text{ H }\cdots \text{ Cl }\_{3}\text{ M }\) Inorg. Chem. 37 4756

    Google Scholar 

  76. Gillon A L, Orpen A G, Starbuck J, Wang X -M, Rodriguez-Martin Y and Ruiz-Perez C 1999 Cation-controlled formation of \([\{\text{ MCl }_{4}\}_{{\rm n}}]^{2{\rm n}-}\) chains in \([4,4^{\prime }-\text{ H }_{2}\text{ bipy }][\text{ MCl }_{4}]\) \((\text{ M } = \text{ Mn }, \text{ Cd })\): an alternative to the \(\text{ A }_{2}\text{ MCl }_{4}\) [100] layer perovskite structure Chem. Commun. 22 2287

    Google Scholar 

  77. Dolling B, Gillon A L, Orpen A G, Starbuck J and Wang X –M 2001 Homologous families of chloride-rich \(4,4^\prime \)-bipyridinium salt structures Chem. Commun. 6 567

    Article  Google Scholar 

  78. Angeloni A and Orpen A G 2001 Control of hydrogen bond network dimensionality in tetrachloroplatinate salt Chem. Commun. 4 343

    Google Scholar 

  79. Braga D, Maini L, Polito M, Tagliavini E and Grepioni F 2003 Design of hydrogen bonded networks based on organometallic sandwich compounds Coord. Chem. Rev. 246 53

    CAS  Google Scholar 

  80. Bassanetti I, Comotti A, Sozzani P, Bracco S, Calestani G, Mezzadri F and Marchioo L 2014 Porous molecular crystals by macrocyclic coordination supramolecules J. Am. Chem. Soc. 136 14883

    Article  CAS  PubMed  Google Scholar 

  81. Papaefstathiou G S, Keuleers R, Milios C J, Raptopoulou C P, Terzis A, Desseyn H O and Perlepes S P 2003 Metal complexes of biologically important ligands, synthesis of peptides from glycine ester catalysed by triflates and chlorides of metal (III, IV, V and VI) ions Z. Naturforsch. 58b 74

  82. Carballo R, Covelo B, Lodeiro C and Vazquez-Lopez E M 2005 One-dimensional fluorescent stacking structure based on zinc mixed-complex salt encapsulated within an ‘ice-like’ three-dimensional hydrogen-bonded water network CrystEngComm 7 294

    Article  CAS  Google Scholar 

  83. Kawade V A, Kumbhar A S, Erxleben A, Pachfulec P and Banerjee R 2011 Hydrogen bond directed honeycomb-like porous network structure of trisbipyridyl-glycoluril.cobaltI(II) chloride CrystEngComm 13 5289

    Article  CAS  Google Scholar 

  84. Dalrymple S A and Shimizu G K H 2007 Crystal engineering of a permanently porous network sustained exclusively by charge-assisted hydrogen bonds J. Am. Chem. Soc. 129 12114

    Article  CAS  PubMed  Google Scholar 

  85. Friscic T, Mestrovic E, Samec D S, Kaitner B and Fabian L 2009 One-pot mechanosynthesis with three levels of molecular self-assembly: coordination bonds, hydrogen bonds and host–guest inclusion Chem. Eur. J. 15 12644

    Article  CAS  Google Scholar 

  86. Karmakar A, Sarma R J and Baruah J B 2007 Polymorphism in an aqua-bridged, dinuclear 2-nitrobenzoate complex of cobalt(II) Eur. J. Inorg. Chem. 5 643

    Google Scholar 

  87. Choudhury S R, Dey B, Das S, Robertazzi A, Jana A D, Chen C -Y, Lee H M, Gamez P and Mukhopadhyay S 2009 Robust recognition of malonate and 2-amino-4-picolinium in conjunction with M(II) as a triad M \(=\) Ni/Co/Mn.: Role of this highly stable hydrogen-bonded motif in driving supramolecular self-assembly Dalton Trans. 37 7617

  88. Das A, Dey B, Jana A D, Hemming J, Helliwell M, Lee H M, Hsiao T -H, Suresh E, Colacio E, Choudhury S R and Mukhopadhyay S 2010 Effect of protonated aminopyridines on the structural divergences of M(II)–malonate complexes (M \(=\) Cu, Ni, Co) Polyhedron 29 1317

    Article  CAS  Google Scholar 

  89. Das A, Choudhury S R, Estarellas C, Dey B, Choudhury A S R, Jana A D, Colacio E, Lee H M, Mostafa G and Mukhopadhyay S 2007 Crowned tetrameric spirocyclic water chain: An unusual building block of a supramolecular metal-organic host Cryst. Growth Des. 7 212

    Article  CAS  Google Scholar 

  90. Mitra M, Seth S K, Choudhury S R, Manna P, Das A, Helliwell M, Bauza A, Frontera A and Mukhopadhyay S 2013 \(\text{ M }^{{\rm II}}\)–Malonate complexes (M \(=\) Mg, Cu, Ni and Co) characterized by layered structures: Experimental observation, Hirshfeld surface analysis and theoretical study Eur. J. Inorg. Chem. 26 4679

    Google Scholar 

  91. Burrows A D, Frost C G, Mahon M F, Raithby P R, Renouf C L, Richardson C and Stevenson A J 2010 Dipyridyl \(\upbeta \)-diketonate complexes: versatile polydentate metalloligands for metal–organic frameworks and hydrogen-bonded networks Chem. Commun. 46 5067

    CAS  Google Scholar 

  92. Bray D J, Clegg J K, Jolliffe K A and Lindoy L F 2014 Cobalt(II), iron(II), zinc(II) and palladium(II) complexes of di-topic \(4^\prime \text{- }\{4\text{- }[\text{ bis }2\text{- }\text{ pyridyl }{\cdot } \text{ aminomethyl }]\text{ phenyl }\}\text{- } 2,2^\prime { :}6^\prime ,2^{\prime \prime }\text{- }\) \(\text{ terpyridine }\). Synthetic and X-ray structural studies CrystEngComm 16 6476

    CAS  Google Scholar 

  93. Shee N K, Naskar J P, Drew M G B, Aliaga-Alcalde N and Datta D 2015 Stabilisation of true \(\uppi \)-electron–\(\uppi \)-electron interactions in an inorganic cocrystal Inorg. Chim. Acta 427 97

    CAS  Google Scholar 

  94. Goldberg I 2000 Metallopophyrin molecular sieves Chem Eur. J. 6 3863

    Article  CAS  Google Scholar 

  95. Abrahams B F, Hoskins B F, Michall D M and Robson R 1994 Assembly of porphyrin building blocks into network structures with large channels Nature 369 727

    Article  CAS  Google Scholar 

  96. Dastidar P, Stein Z, Goldberg I and Strouse C E 1996 Supramolecular assembly of functionalized metalloporphyrinssporous crystalline networks of zinc-tetra4-carboxyphenyl.porphyrin Supramol. Chem. 7 257

    Article  CAS  Google Scholar 

  97. Byrn M P, Curtis C J, Hsiou Y, Khan S I, Sawin P A, Tendick S K, Terzis A and Strouse C E A 1993 Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates J. Am. Chem. Soc. 115 9480

    Article  CAS  Google Scholar 

  98. Goldberg I 2002 Design strategies for supramolecular porphyrin-based materials-highlight CrystEngComm 4 109

    CAS  Google Scholar 

  99. Bhyrappa P, Wilson S R and Suslick K S 1997 Hydrogen bonded porphyrinic solids: supramolecular networks of octahydroxy porphyrins J. Am. Chem. Soc. 119 8492

    Article  CAS  Google Scholar 

  100. Singh S, Aggarwal A, Farley C, Hageman B A, Batteas J D and Drain C M 2011 Hierarchical organization of a robust porphyrin cage self-assembled by hydrogen bonds Chem. Commun. 47 7134

    CAS  Google Scholar 

  101. Suslick K S, Bhyrappa P, Chou J -H, Kosal M, Nakagaki S, Smithenry D W and Wilson S R 2005 Microporous Porphyrin Solids Acc. Chem. Res. 38 283

    Article  CAS  Google Scholar 

  102. Moreira L, Calbo J, Illescas B M, Arag J, Nierengarten I, Delavaux-Nicot B, Ort E, Martn N and Nierengarten J -F 2015 Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates Angew. Chem. Int. Edit. 54 1255

    Article  CAS  Google Scholar 

  103. Konarev D V, Khasanov S S and Lyubovskaya R M 2014 Fullerene complexes with coordination assemblies of metalloporphyrins and metal phthalocyanines Coord. Chem. Rev. 262 16

    CAS  Google Scholar 

  104. Chandra B K C and D’Souza F 2016 Design and photochemical study of supramolecular donor–acceptor systems assembled via metal–ligand axial coordination Coord. Chem. Rev. 322 104

    Google Scholar 

  105. Lebedeva M A, Chamberlain T W, Davies E S, Mancel D, Thomas B E, Suyetin M, Bichoutskaia E, Schreder M and Khlobystov A N 2013 Transition metal complexes of a salen–fullerene diad: redox and catalytically active nanostructures for delivery of metals in nanotubes Chem. Eur. J. 19 11999

    Article  CAS  Google Scholar 

  106. He L, Ma D, Duan L, Wei Y, Qiao J, Zhang D, Dong G, Wang L and Qiu Y 2012 control of intramolecular \(\uppi -\uppi \) stacking interaction in cationic Iridium complexes via fluorination of pendant phenyl rings Inorg. Chem. 51 4502

    CAS  Google Scholar 

  107. Sivakova S and Rowan S J 2005 Nucleobases as supramolecular motifs Chem. Soc. Rev. 34 9

    Article  CAS  Google Scholar 

  108. Hunter C A 1993 The role of base stacking interactions J. Mol. Biol. 230 1025

    Article  CAS  PubMed  Google Scholar 

  109. Bhattacharyya D, Arachchilage G M and Basu S G and Basu S 2016 Metal cations in G-quadruplex folding and stability Front Chem. 4 38

    PubMed  Google Scholar 

  110. Garah M E, Perone R C, Bonilla A S, Haar S, Campitiello M, Gutierrez R, Cuniberti G, Masiero S, Ciesielski A and Samorı P 2015 Guanosine-based hydrogen-bonded 2D scaffolds: metal-free formation of G-quartet and G-ribbon architectures at the solid/liquid interface Chem. Commun. 51 11677

    CAS  Google Scholar 

  111. Zhang S, Wu Y and Zhang W 2014 G-Quadruplex structures and their interaction diversity with ligands ChemMedChem. 9 899

    PubMed  CAS  Google Scholar 

  112. Garcia-Teran J P, Castillo O, Luque A, Garcia-Couceiro U, Beobide G and Roman P 2006 Supramolecular architectures assembled by the interaction of purine nucleobases with metal-oxalato frameworks. Non-covalent stabilization of the 7H-adenine tautomer in the solid-state Dalton Trans. 7 902

    Article  Google Scholar 

  113. Garcia-Teran J P, Castillo O, Luque A, Garcia-Couceiro U, Beobide G and Roman P 2007 Molecular recognition of adeninium cations on anionic metal-oxalato frameworks: An experimental and theoretical analysis Inorg. Chem. 46 3593

    CAS  Google Scholar 

  114. Marian C, Nolting D and Weinkauf R 2005 The electronic spectrum of protonated adenine: Theory and experiment Phys. Chem. Chem. Phys. 7 3306

    Article  CAS  Google Scholar 

  115. Das B, Boudalis A K and Baruah J B 2010 Selective adenine/cytosine cations in one-dimensional coordination polymers of manganese(II) and copper(II) 2,3-pyridine dicarboxylates Inorg. Chem. Commun. 13 1244

    CAS  Google Scholar 

  116. Garcia-Teran J P, Castillo O, Luque A, Garcia-Couceiro U, Beobide G and Roman P 2007 Molecular recognition of protonated cytosine ribbons by metal–oxalato frameworks Cryst. Growth Des. 7 2594

    Article  CAS  Google Scholar 

  117. Das B and Baruah J B 2010 Protonated adenine and cytosine ribbons stabilized by dipicolinato metal frameworks Cryst. Growth Des. 10 3242

    Article  CAS  Google Scholar 

  118. Salam M A and Aoki K 2000 Interligand interactions affecting specific metal bonding to nucleic acid bases: the tripodal nitrilotriacetato (nta) ligand-system. Crystal structures of [(nta)(adeninium)(aqua)nickel(II)] hydrate, [(nta)(diaqua)nickel(II)].(cytosinium) hydrate, and [(nta)(diaqua)nickel(II)].(cytosinium).(cytosine) hydrate

  119. Das B and Baruah J B 2012 Assembling of copper (II) dipicolinate complexes Polyhedron 31 361

    Article  CAS  Google Scholar 

  120. Malenov D P, Janjic G V, Medakovic V B, Hall M B and Zaric S D 2017 Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. Coord. Chem. Rev. 345 318

    Article  CAS  Google Scholar 

  121. Shankar K, Kirillov A M and Baruah J B 2015 A modular approach for molecular recognition by zinc dipicolinate complexes Dalton Trans. 44 14411

    PubMed  CAS  Google Scholar 

  122. Shankar K, Singh M P and Baruah J B 2018 Extent of protonation of 4,\(4^{\prime }\)-bipyridinium cations and nature of host influences the amount of guest intake by cobalt(II) 2,6-pyridinedicarboxylate Inorg. Chim. Acta 469 440

    CAS  Google Scholar 

  123. Shankar K and Baruah J B 2017 Inclusion of dihydroxyaromatics by a lanthanumI(II) 2,6-dipicolinate complex Polyhedron 126 262

    Article  CAS  Google Scholar 

  124. Kirillova M V, da Silva M F C G, Kirillov A M, da Silva J J R F and Pombeiro A J L 2007 3D hydrogen bonded heteronuclear \(\text{ Co }^{{\rm II}}\), \(\text{ Ni }^{{\rm II}}\), \(\text{ Cu }^{{\rm II}}\) and \(\text{ Zn }^{{\rm II}}\) aqua complexes derived from dipicolinic acid Inorg. Chim. Acta 360 506

  125. Gao H, Yi L, Zhao B, Zhao X, Cheng P, Liao D and Yan S 2006 Synthesis and characterization of metal-organic frameworks based on 4-hydroxypyridine-2,6-dicarboxylic acid and pyridine-2,6-dicarboxylic acid ligands Inorg. Chem. 45 5980

    CAS  Google Scholar 

  126. Aghabozorg H, Manteghi F and Sheshmani S 2008 A brief review on structural concepts of novel supramolecular proton transfer compounds and their metal complexes J. Iran. Chem. Soc. 5 184

    Article  CAS  Google Scholar 

  127. Mirzaei M, Aghabozorg H and Hosseini E H 2011 A brief review of structural concepts of novel supramolecular proton transfer compounds and their metal complexes part II J. Iran Chem. Soc. 8 580

    Article  CAS  Google Scholar 

  128. Das B and Baruah J B 2010 Cooperativity on selective products in one pot reactions of 2,6-pyridinedicarboxylic acid and ethylenediamine with metal ions Inorg. Chem. Commun. 13 350

    CAS  Google Scholar 

  129. Shankar K and Baruah J B 2016 Modulation of fluorescence emissions of copper(II) 2,2-biquinoline-4,4-dicarboxylate ChemistrySelect. 1 3038

  130. Das B and Baruah J B 2013 Water clusters in mixed ionic complexes with metal dipicolinate anions J. Mol. Struct. 1034 144

    Article  CAS  Google Scholar 

  131. Das B and Baruah J B 2010 Coordinated cations in dipicolinato complexes of divalent metal ions Inorg. Chim. Acta 363 1479

    CAS  Google Scholar 

  132. Ma C, Chen C, Chen F, Xhang X, Zhu H, Liu Q, Liao D and Li L 2003 Syntheses and structures of three types of hybrid metal dipicolinato complexes induced by alkali metal ion and the semiconductor character Bull. Chem. Soc. Jpn. 76 301

    Article  CAS  Google Scholar 

  133. Ikeda T, Takayama M, Kumar J, Kawai T and Haino T 2015 Novel helical assembly of a Pt(II) phenylbipyridine complex directed by metal–metal interaction and aggregation-induced circularly polarized emission Dalton Trans. 44 13156

    Article  CAS  PubMed  Google Scholar 

  134. MacDonald J C, Dorrestein P C, Pilley M M, Foote M M, Lundburg J L, Henning R W, Schultz A J and Manson J L 2000 Design of layered crystalline materials using coordination chemistry and hydrogen bonds J. Am. Chem. Soc. 122 11692

    Article  CAS  Google Scholar 

  135. Meeuwissen J and Reek J N H 2002 Supramolecular catalysis beyond enzyme mimics Nat. Chem. 2 615

    Google Scholar 

  136. Diab L, Smejkal T, Geier J and Breit B 2009 Supramolecular catalyst for aldehyde hydrogenation and tandem hydroformylation–hydrogenation Angew. Chem. Int. Edit. 48 8022

    Article  CAS  Google Scholar 

  137. Park J, Lang K, Abboud K A and Hong S 2008 Self-assembled dinuclear cobalt(II)-salen catalyst through hydrogen-bonding and its application to enantioselective nitro-aldol Henry reaction J. Am. Chem. Soc. 130 16484

    Article  CAS  PubMed  Google Scholar 

  138. Martín C, Whiteoak C J, Martin E, Escudero-Adan E C, Galan-Mascaros J R and Kleij A W 2014 Synthesis and structural features of Co(II) and Co(III) complexes supported by aminotrisphenolate ligand scaffolds Inorg. Chem. 53 11675

    Google Scholar 

  139. Mote N R, Patel K, Shinde D R, Gaikwad S R, Koshti V S, Gonnade R G and Chikkali S H 2017 H-Bonding assisted self-assembly of anionic and neutral ligand on metal: A comprehensive strategy to mimic ditopic ligands in olefin polymerization Inorg. Chem. 56 12448

    CAS  Google Scholar 

  140. Noveron J C, Lah M S, Sesto R E D, Arif A M, Miller J S and Stang P J 2002 Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit J. Am. Chem. Soc. 124 6613

    Article  CAS  PubMed  Google Scholar 

  141. Nakajima K and Hori A 2014 Dynamic transformation and reversible guest encapsulations of pseudopolymorphs of a fully fluorinated \(\upbeta \)-diketonate Pd(II) complex Cryst. Growth Des. 14 3169

    Article  CAS  Google Scholar 

  142. Bouzaid J, Schultz M, Lao Z, Bostrom T and McMurtrie J 2015 Supramolecular selection in molecular alloys Cryst. Growth Des. 15 62

    Article  CAS  Google Scholar 

  143. Huang T J, Thiang Z X, Yin X, Tang C, Qi G and Gong H 2016 \((\text{ CH }_{3}\text{ NH }_{3})_{2}\text{ PdCl }_{4}\): A compound with two-dimensional organic–inorganic layered perovskite structure Chem. Eur. J. 22 2146

    Article  CAS  Google Scholar 

  144. Dohner E E R, Hoke E T and Karunadasa H I 2014 Self-assembly of broadband white-light emitters J. Am. Chem. Soc. 136 1718

    Article  CAS  PubMed  Google Scholar 

  145. Ritchie C, Burkholder E M, Long D-L, Adam D, Kogerler P, Cronin L 2007 Exploiting the multifunctionality of organocations in the assembly of hybrid polyoxometalate clusters and networks Chem. Commun. 5 468

    Google Scholar 

  146. Mao L, Tsai H, Nie W, Ma L, Im J, Stoumpos C C, Malliakas C D, Hao F, Wasielewski M R, Mohite A D and Kanatzidis M G 2016 Ruddlesden–popper hybrid lead Iodide perovskite 2D homologous semiconductors Chem. Mater. 28 7781

    CAS  Google Scholar 

  147. Li Y Y, Lin C K, Zheng G L, Cheng Z Y, You H, Wang W D and Lin J 2006 Novel [110]-oriented organic–inorganic perovskite compound stabilized by N-3-aminopropyl.imidazole with improved optical properties Chem. Mater. 18 3463

    Article  CAS  Google Scholar 

  148. Guloy A M, Tang Z, Miranda P B and Srdanov V I 2001 A new luminescent organic–inorganic hybrid compound with large optical nonlinearity Adv. Mater. 13 833

    CAS  Google Scholar 

  149. Hogan G A, Rath N P and Beatty A M 2011 A stable hydrogen-bonded coordination network with removable guests Cryst. Growth Des. 11 3740

    Article  CAS  Google Scholar 

  150. Shankar K and Baruah J B 2016 Mixed anionic and inclusion complexes of nickel(II) with nitroaromatics showing selectivity in oxygen-\(\uppi \) interactions Inorg. Chim. Acta 453 135

    CAS  Google Scholar 

  151. Shankar K and Baruah J B 2016 Tetranuclear cobalt complexes as nano-dimensional template for inclusion of nitrophenols ChemistrySelect. 1 5152

    CAS  Google Scholar 

  152. Yagishita S, Himegi A, Kanazashi K, Ohishi T, Ishikawa R, Hamaguchi T and Kawata S 2017 Structural transformations of layered structures constructed from Cu(II)–chloranilate monomer compounds Dalton Trans. 46 2966

    Article  CAS  PubMed  Google Scholar 

  153. Ferlay S, Dechambenoit P, Kyritsakas N and Hosseini M W 2013 Molecular tectonics: Tuning the dimensionality and topology of extended cyanocuprate networks using a bisamidinium cation Dalton Trans. 42 11661

    PubMed  CAS  Google Scholar 

  154. Braga D, d’Agostino S, D’Amen E, Grepioni F, Genovese D, Prodi L and Sgarzi M 2013 A quest for supramolecular gelators: SilverI. complexes with quinoline-urea derivatives Dalton Trans. 42 16949

    Article  CAS  PubMed  Google Scholar 

  155. Boyd P D W and Reed C A 2005 Fullerene-porphyrin constructs Acc. Chem. Res. 38 235

    Article  CAS  PubMed  Google Scholar 

  156. Wang B, Zheng S, Saha A, Bao L, Lu X and Guldi DM 2017 Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets J. Am. Chem. Soc. 139 10578

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jubaraj B Baruah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, J.B. Predominantly ligand guided non-covalently linked assemblies of inorganic complexes and guest inclusions. J Chem Sci 130, 56 (2018). https://doi.org/10.1007/s12039-018-1458-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1458-8

Keywords

Navigation