Skip to main content
Log in

Mid-infrared quantum cascade laser spectroscopy probing of the kinetics of an atmospherically significant radical reaction, \(\hbox {CH}_{3}\hbox {O}_{2}+\hbox {NO}_{2}+\hbox {M}\rightarrow \hbox {CH}_{3}\hbox {O}_{2}\hbox {NO}_{2}+\hbox {M}\), in the gas phase

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The kinetic parameters of an important atmospheric reaction, \(\hbox {CH}_{3}\hbox {O}_{2} + \hbox {NO}_{2} + \hbox {M}\rightarrow \hbox {CH}_{3}\hbox {O}_{2}\hbox {NO}_{2} + \hbox {M}\), have been recorded by monitoring directly the changes in concentrations of methylperoxy radicals \((\hbox {CH}_{3}\hbox {O}_{2})\) in the gas phase employing a new mid-infrared quantum cascade laser (QCL)-based apparatus. \(\hbox {CH}_{3}\hbox {O}_{2 }\) radicals in our apparatus have been generated by pulsed UV laser (266 nm) photolysis of \(\hbox {CH}_{3}\hbox {I}\) in a gaseous mixture with oxygen. The absorption band corresponding to the mid-infrared O-O stretching fundamental of the peroxy radical, within a narrow spectral range, 1070–1120 \(\hbox {cm}^{-1}\), has been recorded by tuning the wavelength of the QCL operated in CW mode. The kinetics of the aforementioned reaction of \(\hbox {CH}_{3}\hbox {O}_{2}\) with \(\hbox {NO}_{2}\) has been followed by analyzing the changes of the infrared (QCL) decay profile of \(\hbox {CH}_{3}\hbox {O}_{2}\) at \(9.1~\upmu \hbox {m}\) \((1098.9~\hbox {cm}^{-1})\) maintaining a pseudo first order reaction condition. We noticed that the rate constant of the reaction at 298 K varies in the range of (1.21–3.08) \(\times 10^{-12}\) \(\hbox {cm}^{3 }~\hbox {molecule}^{-1 }\,\hbox {s}^{-1 }\) for changing the total pressure in the range of 75–730 mbar. The absorption cross-section of \(\hbox {CH}_{3}\hbox {O}_{2}\) at the probe wavelength \((1098.9~\hbox {cm}^{-1})\), has been estimated for the first time to be \(8.3 \pm 0.4 \times 10^{-20}~\hbox {cm}^{2}\).

Graphical Abstract 

Kinetics measurement of an atmospherically important gas phase reaction, \(\hbox {CH}_{3}\hbox {O}_{2}+\hbox {NO}_{2}+\hbox {M}\rightarrow \hbox {CH}_{3}\hbox {O}_{2}\hbox {NO}_{2}+\hbox {M}\), is studied using a newly developed apparatus based on pulsed UV laser photolysis time-resolved mid-infrared absorption spectroscopy. \(\hbox {CH}_{3}\hbox {O}_{2}\) radicals are probed in the mid-infrared by a CW quantum cascade laser (QCL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cox R A 2003 Chemical Kinetics and Atmospheric Chemistry: Role of Data Evaluation Chem. Rev. 103 4533

    Article  CAS  PubMed  Google Scholar 

  2. Jacob D J 1999 Introduction to Atmospheric Chemistry (Princeton University Press: Princeton) p. 157

  3. Orlando J J and Tyndall G S 2012 Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance Chem. Soc. Rev. 41 6294

    Article  CAS  PubMed  Google Scholar 

  4. Miller J A, Kee R J and Westbrook C K 1990 Chemical kinetics and combustion modeling Annu. Rev. Phys. Chem. 41 345

    Article  CAS  Google Scholar 

  5. Westbrook C K 2000 Chemical kinetics of hydrocarbon ignition in practical combustion systems Proc. Combust. Inst. 28 1563

    Article  CAS  Google Scholar 

  6. Smith I W M and Rowe B R 2000 Reaction Kinetics at Very Low Temperatures: Laboratory Studies and Interstellar Chemistry Acc. Chem. Res. 33 261

    Article  CAS  PubMed  Google Scholar 

  7. Miller T A 2006 Spectroscopic probing and diagnostic of the geometric structure of the alkoxy and alkyl peroxy radical intermediates Mol. Phys. 104 2581

    Article  CAS  Google Scholar 

  8. Deng W, Wang C, Katz D R, Gawinski G R, Davis A J and Dibble T S 2000 Direct kinetic studies of the reactions of 2-butoxy radicals with NO and \(\text{ O }_{2}\) Chem. Phys. Lett. 330 541

    Article  CAS  Google Scholar 

  9. Lightfoot P D, Cox R A, Crowley J N, Destriau M, Hayman G D, Jenkin M E, Moortgat G K and Zabel F 1992 Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry Atmos. Environ. 26 1805

    Article  Google Scholar 

  10. Krasnoperov L N, Chesnokov E N, Stark H and Ravishankara A R 2005 Elementary reactions of formyl (HCO) radical studies by laser photolysis-transient absorption spectroscopy Proc. Combust. Inst. 30 935

    Article  CAS  Google Scholar 

  11. Raventós-Duran M T, Mcgillen M, Percival C J, Hamer P D and Shallcross D E 2007 Kinetics of the \(\text{ CH }_{3}\text{ O }_{2} + \text{ HO }_{2}\) reaction: A temperature and pressure dependence study using chemical ionization mass spectrometry Int. J. Chem. Kinet. 39 571

    Article  CAS  Google Scholar 

  12. Elg A -P, Andersson M and Rosen A 1997 REMPI as a tool for studies of OH radicals in catalytic reactions Appl. Phys. B 64 573

    Article  CAS  Google Scholar 

  13. Rajakumar B, Portmann R W, Burkholder J B and Ravishankara A R 2006 Rate Coefficients for the Reactions of OH with \(\text{ CF }_{3}\text{ CH }_{2}\text{ CH }_{3}\) (HFC-263fb), \(\text{ CF }_{3}\text{ CHFCH }_{2}\text{ F }\) (HFC-245eb), and \(\text{ CHF }_{2}\text{ CHFCHF }_{2}\) (HFC-245ea) between 238 and 375 K J. Phys. Chem. A 110 6724

    Article  CAS  PubMed  Google Scholar 

  14. Chai J, Hu H, Dibble T S, Tyndall G S and Orlando J J 2014 Rate Constants and Kinetic Isotope Effects for Methoxy Radical Reacting with \(\text{ NO }_{2}\) and \(\text{ O }_{2}\) J. Phys. Chem. A 118 3552

    Article  CAS  PubMed  Google Scholar 

  15. Osborn D L, Zou P, Johnsen H, Hayden C C, Taatjes C A, Knyazev V D, North S W, Peterka D S, Ahmed M and Leone S R 2008 The multiplexed chemical kinetic photoionization mass spectrometer: A new approach to isomer-resolved chemical kinetics Rev. Sci. Instrum. 79 104103

    Article  CAS  PubMed  Google Scholar 

  16. Atkinson D B and Spillman J L 2002 Alkyl Peroxy Radical Kinetics Measured Using Near-infrared CW-CavityRing Down Spectrometer J. Phys. Chem. A 106 8891

    Article  CAS  Google Scholar 

  17. Wallington T J, Dagaut P and Kurylo M J 1992 UV absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase Chem. Rev. 92 667

    Article  CAS  Google Scholar 

  18. Krasnoperov L N and Mehta K 1999 Kinetic Study of \(\text{ CH }_{3}\) + HBr and \(\text{ CH }_{3}\) + Br Reactions by Laser Photolysis – Transient Absorption over 1-100 Bar Pressure Range J. Phys. Chem. A 103 8008

    Article  CAS  Google Scholar 

  19. Krasnoperov L N, Chesnokov E N, Stark H and Ravishankara A R 2004 Unimolecular dissociation of formyl radical, \(\text{ HCO }\rightarrow \text{ H } + \text{ CO }\), studied over 1 – 100 bar pressure range J. Phys. Chem. A 108 11526

    Article  CAS  Google Scholar 

  20. Faragó E P, Viskolcz B, Schoemaecker C and Fittschen C 2013 Absorption Spectrum and Absolute Absorption Cross Sections of \(\text{ CH }_{3}\text{ O }_{2}\) Radicals and \(\text{ CH }_{3}\text{ I }\) Molecules in the Wavelength Range \(7473-7497~\text{ cm }^{-1}\) J. Phys. Chem. A 117 12802

    Article  CAS  PubMed  Google Scholar 

  21. Rajakumar B, Gericzak T, Flad J E, Ravishankara A R and Burkholder J B 2007 Visible Absorption Spectrum of the \(\text{ CH }_{3}\text{ CO }\) Radical J. Phys. Chem. A 111 8950

    Article  CAS  PubMed  Google Scholar 

  22. Miyano S and Tonokura K 2011 Measurements of nitrogen-broadening coefficients in the \(\upsilon _{3}\) band of the hydroperoxyl radical using a continuous wave quantum cascade laser J. Mol. Spectrosc. 265 47

    Article  CAS  Google Scholar 

  23. Sakamoto Y and Tonokura K 2012 Measurements of the Absorption Line Strength of Hydroperoxyl Radical in the \(\upsilon _{3 }\) Band using a Continuous Wave Quantum Cascade Laser J. Phys. Chem. A 116 215

    Article  CAS  PubMed  Google Scholar 

  24. Mah D A, Cabrera J, Nation H, Ramos M, Sharma S and Nickolaisen S L 2003 Mid-infrared Spectrum of the Gas Phase Ethyl Peroxy Radical: \(\text{ C }_{2}\text{ H }_{5}\text{ OO }\) J. Phys. Chem. A 107 4354

    Article  CAS  Google Scholar 

  25. Salisbury G, Rickard A R, Monks P S, Allan B J, Bauguitte S, Penkett S A, Carslaw N, Lewis A C, Creasey D J, Heard D E, Jacobs P J and Lee J D 2001 Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer J. Geophys. Res. [Atmos]. 10612669

    Article  CAS  Google Scholar 

  26. Tyndall G S, Cox R A, Granier C, Lesclaux R, Moortgat G K, Pilling M J Ravishankara A R and Wallington T J 2001 Atmospheric chemistry of small organic peroxy radicals J. Geophys. Res. [Atmos]. 106 12157

    Article  CAS  Google Scholar 

  27. Wang S, Miller D L, Cernansky N P, Curran H J, Pitz W J and Westbrook C K 1999 A flow reactor study of neopentane oxidation at 8 atmospheres: experiments and modeling Combust. Flame 118 415

    Article  CAS  Google Scholar 

  28. Murphy J G, Thornton J A, Wooldridge P J, Day D A, Rosen R S, Cantrell C, Shetter R E, Lefer B and Cohen R C 2004 Measurements of the sum of \(\text{ HO }_{2}\text{ NO }_{2}\) and \(\text{ CH }_{3}\text{ O }_{2}\text{ NO }_{2}\) in the remote troposphere Atmos. Chem. Phys. 4 377

    Article  CAS  Google Scholar 

  29. Nault B A, Garland C, Pusede S E, Wooldridge P J, Ullmann K, Hall S R and Cohen R C 2015 Measurements of \(\text{ CH }_{3}\text{ O }_{2}\text{ NO }_{2}\) in the upper trosphere Atmos. Meas. Tech. 8 987

    Article  CAS  Google Scholar 

  30. Ravishankara A R, Eisele F L and Wine P H 1980 Pulsed laser photolysis-long path laser absorption kinetics study of the reaction of methylperoxy radicals with \(\text{ NO }_{2}\) J. Chem. Phys. 73 3743

    Article  CAS  Google Scholar 

  31. Sander S P and Watson R T 1980 Kinetics studies of the reactions of methylperoxy with nitric oxide, nitrogen dioxide, and methyldioxy at 298 K J. Phys. Chem. 84 1664

    Article  CAS  Google Scholar 

  32. Adachi H and Basco N 1980 The reaction of \(\text{ CH }_{3}\text{ O }_{2}\) radicals with \(\text{ NO }_{2}\) Int. J. Chem. Kinet. XII 1

  33. Cox R A and Tyndall G S 1980 Rate Constants for the reactions of \(\text{ CH }_{3}\text{ O }_{2}\) with \(\text{ HO }_{2}\), NO and \(\text{ NO }_{2}\) using Molecular Modulation Spectrometry J.C.S. Faraday II 76 153

    Article  CAS  Google Scholar 

  34. Bridier I, Lesclaux R and Veyret B 1992 Flash potolysis kinetic study of the equilibrium \(\text{ CH }_{3}\text{ O }_{2} + \text{ NO }_{2} = \text{ CH }_{3}\text{ O }_{2}\text{ NO }_{2}\) Chem. Phys. Lett. 191 259

    Article  CAS  Google Scholar 

  35. Wallington T J, Nielsen O J and Sehested K Kinetics of the reaction of \(\text{ CH }_{3}\text{ O }_{2}\) radicals with \(\text{ NO }_{2}\) 1999 Chem. Phys. Lett. 313 456

  36. Bacak A, Bardwell M W, Ravento’s-Duran M T, Percival C J, Hamer P D and Shallcross D E 2006 Kinetics of the \(\text{ CH }_{3}\text{ O }_{2} + \text{ NO }_{2}\) reaction: A temperature and pressure dependence study using chemical ionistion mass spectrometry Chem. Phys. Lett. 419 125

    Article  CAS  Google Scholar 

  37. McKee K, Blitz M A and Pilling M J 2016 Temperature and Pressure Studies of The Reactions of \(\text{ CH }_{3}\text{ O }_{2}\), \(\text{ HO }_{2}\) and 1,2-\(\text{ C }_{4}\text{ H }_{9}\text{ O }_{2}\) with \(\text{ NO }_{2}\) J. Phys. Chem. A 120 1408

    Article  CAS  PubMed  Google Scholar 

  38. Huang D-R, Chu L-K and Lee Y-P 2007 Infrared absorption of gaseous \(\text{ CH }_{3}\text{ OO }\) detected with a step-scan Fourier-transform spectrometer J. Chem. Phys. 127 234318

    Article  CAS  PubMed  Google Scholar 

  39. Chu L-K and Lee Y-P 2009 Infrared absorption of gaseous c-ClCOOH and t-ClCOOH recorded with a step-scan Fourier-transform spectrometer J. Chem. Phys. 130 174304

    Article  CAS  PubMed  Google Scholar 

  40. Chu L-K and Lee Y-P 2010 Transient infrared spectra of \(\text{ CH }_{3}\text{ SOO }\) and \(\text{ CH }_{3}\text{ SO }\) observed with a step-scan Fourier-transform spectrometer J. Chem. Phys. 133 184303

    Article  CAS  PubMed  Google Scholar 

  41. Keller-Rudek H, Moortgat G K, Sander R and Sörensen R 2013 The MPI-Mainz UV/VIS Spectral atlas of gaseous molecules of atmospheric interest Earth Syst. Sci. Data 5 365

    Article  Google Scholar 

  42. Savitsky A and Golay M J E 1964 Smoothing and differentiation of data by simplified least squares procedures Anal. Chem. 36 1627

    Article  Google Scholar 

  43. Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J and Troe J 2006 Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II-gas phase reactions of organic species Atmos. Chem. Phys. 6 3625. IUPAC Subcommittee for Gas Kinetic Data Evaluation, (http://iupac.pole-ether.fr) (Accessed on 1 March 2018)

  44. Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J and Troe J 2004 Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I-gas phase reactions of \(\text{ O }_{x}\), \(\text{ HO }_{x}\), \(\text{ NO }_{x}\) and \(\text{ SO }_{x}\) species Atmos. Chem. Phys. 4 1461. IUPAC Subcommittee for Gas Kinetic Data Evaluation, (http://iupac.pole-ether.fr) (Accessed on 1 March 2018)

  45. Pushkarsky M B, Zalyubovsky S J and Miller T A 2000 Detection and characterization of alkyl peroxy radicals using cavity ring down spectroscopy J. Chem. Phys. 112 10695

    Article  CAS  Google Scholar 

  46. Keiffer M, Miscampbell A J and Pilling M J 1988 A global technique for analyzing multiple decay curves. Application to the \(\text{ CH }_{3}\) + O\(_2\) system J. Chem. Soc. Faraday Trans. 84 505

    Article  CAS  Google Scholar 

  47. Braun W, Herron J T and Kahaner D K 1988 Acuchem: A computer program for modeling complex chemical reaction systems Int. J. Chem. Kinet. 20 51

    Article  CAS  Google Scholar 

  48. Jenkin M E and Cox R A 1991 Kinetics of reactions of \(\text{ CH }_{3}\text{ O }_{2}\) and \(\text{ HOCH }_{2}\text{ CH }_{2}\text{ O }_{2}\) radicals produced by the photolysis of iodomethane and 2-iodoethanol J. Phys. Chem. 95 3229

    Article  CAS  Google Scholar 

  49. Dillon T J, Tucceri M E and Crowley J N 2006 Laser induced fluorescence studies of iodine oxide chemistry part II. The reactions of IO with \(\text{ CH }_{3}\text{ O }_{2}\), \(\text{ CF }_{3}\text{ O }_{2}\) and \(\text{ O }_{3}\). Phys. Chem. Chem. Phys. 8 5185

    Article  CAS  PubMed  Google Scholar 

  50. Niki H, Maker P D, Savage C M and Breitenbach L P 1978 FTIR spectroscopic observation of peroxymethyl nitrate formed via ROO + \(\text{ NO }_{2}\rightarrow \text{ ROONO }_{2}\) Chem. Phys. Lett. 55 289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support received from the Department of Science and Technology, Govt. of India, under the Scheme Number SB/S1/PC-027/2013. AC thanks CSIR, Govt. of India and IACS for the Senior Research Fellowship, MS and KM thank UGC, Govt. of India for Junior Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aparajeo Chattopadhyay or Tapas Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Samanta, M., Mondal, K. et al. Mid-infrared quantum cascade laser spectroscopy probing of the kinetics of an atmospherically significant radical reaction, \(\hbox {CH}_{3}\hbox {O}_{2}+\hbox {NO}_{2}+\hbox {M}\rightarrow \hbox {CH}_{3}\hbox {O}_{2}\hbox {NO}_{2}+\hbox {M}\), in the gas phase. J Chem Sci 130, 54 (2018). https://doi.org/10.1007/s12039-018-1451-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1451-2

Keywords

Navigation