Skip to main content
Log in

Unveiling electrostatic portraits of quinones in reduction and protonation states

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Quinones are known to perform diverse functions in a variety of biological and chemical processes as well as molecular electronics owing to their redox and protonation properties. Electrostatics chiefly governs intermolecular interaction behaviour of quinone states in such processes. The electronic distribution of a prototypical quinone, viz., p-benzoquinone, with its reduction and protonation states (BQS) is explored by molecular electrostatic potential (MESP) mapping using density functional theory. The reorganization of electronic distribution of BQS and their interaction with electrophiles are assessed for understanding the movement of ubiquinone in bacterial photosynthetic reaction centre, by calculating their binding energy with a model electrophile viz., lithium cation (\(\hbox {Li}^{+}\)) at B3LYP/6-311+G(d,p) level of theory. The changes in the values of the MESP minima of BQS states alter their interacting behaviour towards \(\hbox {Li}^{+}\). A good correlation is found between the value of MESP minimum of BQS and the \(\hbox {Li}^{+}\) binding strength at the respective site. To acquire more realistic picture of the proton transfer process to quinone with respect to its reduction state in the photosynthetic reaction center, interaction of BQS with model protonated motifs of serine, histidine as well as \(\hbox {NH}_{4}^{+}\) is explored. Further, the electronic conjugation of the reduced states of 9,10-anthraquinone is probed through MESP for understanding the switching nature of their electronic conductivity.

Graphical Abstract

Quinones perform important function of proton transfer in photosynthesis and also act as a switch in molecular electronics. This work explores the electronic distribution of reduction and protonation states of p-benzoquinone using molecular electrostatic potential, for understanding the mechanisms of quinone activity in the photosynthesis and its switching nature in electronic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Heffner J E, Raber J C, Moe O A and Wigal C T 1998 Using cyclic voltammetry and molecular modelling to determine substituent effects in the one-electron reduction of benzoquinones J. Chem. Educ. 75 365

    Article  CAS  Google Scholar 

  2. Guin P S, Das S and Mandal P C 2011 Electrochemical reduction of quinones in different media: a review Int. J. Electrochem . 2011 1

    Article  CAS  Google Scholar 

  3. Ernster L and Dallner G 1995 Biochemical physiological and medical aspects of ubiquinone function Biochim. Biophys. Acta 1271 195

    Google Scholar 

  4. Marreiros B C, Calisto F, Castro P J, Duarte A M, Sena F V, Silva A F, Sousa F M, Teixeira M, Refojo P N and Pereira M M 2016 Exploring membrane respiratory chains Biochim. Biophys. Acta 1857 1039

    CAS  Google Scholar 

  5. Kato Y, Nagao R and Noguchi T 2016 Redox potential of the terminal quinone electron acceptor \(\text{ Q }_{{\rm b}}\) in photosystem II reveals the mechanism of electron transfer regulation Proc. Natl. Acad. Sci. (U. S. A.) 113 620

    Article  CAS  Google Scholar 

  6. Okamura M Y, Paddock M L, Graige M S and Feher G 2000 Proton and electron transfer in bacterial reaction centres Biochim. Biophys. Acta 1458 148

    CAS  Google Scholar 

  7. Feher G, Allen J C, Okamura M Y and Rees D C 1989 Structure and function of bacterial photosynthetic reaction centres Nature 339 111

    Article  CAS  Google Scholar 

  8. Nabedryk E and Breton J 2008 Coupling of electron transfer to proton uptake at the \({}_{{\rm QB}}\) site of the bacterial reaction center: A perspective from FTIR difference spectroscopy Biochim. Biophys. Acta 1777 1229

    CAS  Google Scholar 

  9. Fyfe P K and Jones M R 2000 Re-emerging structures: continuing crystallography of the bacterial reaction centre Biochim. Biophys. Acta 1459 413

    CAS  Google Scholar 

  10. Stowell M H B, McPhillips T M, Rees D C, Soltis S M, Abresch E and Feher G 1997 Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer Science 276 812

    Article  CAS  PubMed  Google Scholar 

  11. Walden S E and Wheeler R A 2002 Protein conformational gate controlling binding site preference and migration for ubiquinone-b in the photosynthetic reaction center of Rhodobacter sphaeroides J. Phys. Chem. B 106 3001

    Article  CAS  Google Scholar 

  12. Lancaster C R D and Michel H 1997 The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, \(\text{ Q }_{{\rm B}}\) Structure 5 1339

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Z and Gunner M R 2005 Energetics of Quinone-Dependent Electron and Proton Transfers in Rhodobacter sphaeroides Photosynthetic Reaction Centers Biochemistry 44 82

    Article  CAS  PubMed  Google Scholar 

  14. Breton J, Boullais C, Mioskowski C, Sebban P, Baciou L and Nabedryk E 2002 Vibrational spectroscopy favors a unique \(\text{ Q }_{{\rm B}}\) binding site at the proximal position in wild-type reaction centers and in the Pro-L209 \(\rightarrow \text{ Tyr }\) Mutant from Rhodobacter sphaeroides Biochemistry 41 12921

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi E and Wraight C A 1996 Potentiation of proton transfer function by electrostatic interactions in photosynthetic reaction centers from Rhodobacter sphaeroides : first results from site-directed mutation of the H subunit Proc. Natl. Acad. Sci. U. S. A. 93 2640

    Article  CAS  Google Scholar 

  16. Manojkumar T K, Choi H S, Tarakeshwar P and Kim K S 2003 Ab initio studies of neutral and anionic \(p\)-benzoquinone-water clusters J. Chem. Phys. 118 8681

    Article  CAS  Google Scholar 

  17. Nepal B and Scheiner S 2016 Enhancing the reduction potential of quinones via complex formation J. Org. Chem. 81 4316

    Article  CAS  PubMed  Google Scholar 

  18. Darwish N, Díez-Pérez I, Da Silva P, Tao N, Gooding J J and Paddon-Row M N 2012 Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule Angew. Chem. Int. Edit. 51 3203

    Article  CAS  Google Scholar 

  19. Baghernejad M, Zhao X, Ørnsø K B, Füeg M, Moreno-García P, Rudnev A V, Kaliginedi V, Vesztergom S, Huang C, Hong W, Broekmann P, Wandlowski T, Thygesen K S and Bryce M R 2014 Electrochemical control of single-molecule conductance by fermi level tuning and conjugation switching J. Am. Chem. Soc. 136 17922

    Article  CAS  PubMed  Google Scholar 

  20. van Dijk E H, Myles D J T, van der Veen M H and Hummelen J C 2006 Synthesis and properties of an anthraquinone-based redox switch for molecular electronics Org. Lett. 8 2333

    Google Scholar 

  21. Xiang D, Wang X, Jia C, Lee T and Guo X 2016 Molecular-scale electronics: from concept to function Chem. Rev. 116 4318

    CAS  Google Scholar 

  22. Markussen T, Schiötz J and Thygesen K S 2010 Electrochemical control of quantum interference in anthraquinone-based molecular switches J. Chem. Phys. 132 224104

    Article  CAS  PubMed  Google Scholar 

  23. Seidel N, Hahn T, Liebing S, Seichter W, Jens K and Weber E 2013 Synthesis and properties of new 9,10-anthraquinone derived compounds for molecular electronics New J. Chem. 37 601

    CAS  Google Scholar 

  24. Greene L E, Godin R and Cosa G 2016 Fluorogenic ubiquinone analogue for monitoring chemical and biological redox processes J. Am. Chem. Soc. 138 11327

  25. Nonella M 1997 Structures and vibrational spectra of \(p\)-benzoquinone in different oxidation and protonation states: a density functional study J. Phys. Chem. B 101 1235

    Article  CAS  Google Scholar 

  26. Boesch S E and Wheeler R A 1997 \(\uppi \)-Donor substituent effects on calculated structures spin properties and vibrations of radical anions of \(p\)-chloranil \(p\)-fluoranil and \(p\)-benzoquinone J. Phys. Chem. A 101 8351

    Article  CAS  Google Scholar 

  27. Brandt U and Trumpower B L 1994 The protonmotive Q cycle in mitochondria and bacteria Crit. Rev. Biochem. 29 165

    Article  CAS  Google Scholar 

  28. Trumpower B L and Gennis R B 1994 Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation Annu. Rev. Biochem. 63 675

    Article  CAS  Google Scholar 

  29. O’Malley P J 1997 A density functional study of the effect of reduction on the geometry and electron affinity of hydrogen bonded 1,4-benzoquinone implications for quinone reduction and protonation in photosynthetic reaction centres Chem. Phys. Lett. 274 251

    Google Scholar 

  30. Nonella M, Mathias G and Tavan P 2003 Infrared spectrum of \(p\)-benzoquinone in water obtained from a QM/MM hybrid molecular dynamics simulation J. Phys. Chem. A 107 8638

    Article  CAS  Google Scholar 

  31. Pou-Amérigo R, Merchán M and Ortí E 1999 Theoretical study of the electronic spectrum of \(p\)-benzoquinone J. Chem. Phys. 110 9536

  32. Zhao X, Imahori H, Zhan C-G, Sakata Y, Iwata S and Kitagawa T 1997 Resonance Raman and FTIR spectra of isotope-labeled reduced 1,4-benzoquinone and its protonated forms in solutions J. Phys. Chem. A 101 622

    Article  CAS  Google Scholar 

  33. Politzer P and Truhlar D G 1981 In Chemical applications of atomic and molecular electrostatic potentials (New York: Plenum)

  34. Politzer P, Landry S J and Wärnhelm T J 1982 Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes J. Phys. Chem. 86 4767

    Article  CAS  Google Scholar 

  35. Sjöberg P and Politzer P 1990 Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes J. Phys. Chem. 94 3959

    Article  Google Scholar 

  36. Tomasi J, Bonaccrosi R and Cammi R 1990 In: Theoretical methods of chemical bonding, Part 3 Maksic Z B (Ed.) (NewYork: Springer) and references therein

  37. Gadre S R, Pundlik S S and Shrivastava I H 1994 A “Critical” appraisal of electrostatic charge models for molecules Proc. Ind. Acad. Sci. (J. Chem. Sci.) 106 303

    CAS  Google Scholar 

  38. (a) Orozco M and Luque J 1996 in Molecular electrostatic potentials concepts and applications Vol. 3. J S Murray and K D Sen (Eds.) (Amsterdam: Elsevier) and references therein; (b) Gadre S R, Bhadane P K, Pundlik S S and Pingale S S 1996 In Molecular electrostatic potentials concepts and applications Vol. 3. J S Murray and K D Sen (Eds.) (Amsterdam: Elsevier) and references therein; (c) Roy D K, Balanarayan P and Gadre S R 2009 Signatures of molecular recognition from the topography of electrostatic potential J. Chem. Sci. 121 815

  39. Gejji S P, Suresh C H, Bartolotti L J and Gadre S R 1997 Electrostatic potential as a harbinger of cation coordination: \(\text{ CF }_{3}\text{ SO }^{3-}\) ion as a model example J. Phys. Chem. 101 5678

    Article  CAS  Google Scholar 

  40. Pingale S S, Gadre S R and Bartolotti L J 1998 Electrostatic insights into the molecular hydration process: a case study of crown ethers J. Phys. Chem. A 102 9987

    Article  CAS  Google Scholar 

  41. Gadre S R and Bhadane P K 1997 Patterns in hydrogen bonding via electrostatic potential topography J. Chem. Phys. 107 5625

    Article  CAS  Google Scholar 

  42. Gadre S R and Pundlik S S 1997 Complementary electrostatics for the study of DNA base-pair interactions J. Phys. Chem. B 101 3298

    Article  CAS  Google Scholar 

  43. Lancaster C R D 2003 The role of electrostatics in proton-conducting membrane protein complexes FEBS Lett . 545 52

    Article  CAS  PubMed  Google Scholar 

  44. Sharma B, Neela Y I and Sastry G N 2016 Structures and energetics of complexation of metal ions with ammonia water and benzene: a computational study J. Comp. Chem. 37 992

    Article  CAS  Google Scholar 

  45. Bhattacharjee A K, Pundlik S S and Gadre S R 1997 Conformational and electrostatic properties of naphthazarin, juglone and naphthoquinone: an ab initio theoretical study Cancer. Invest. 15 531

    CAS  Google Scholar 

  46. Abroshan H, Dhumal N R, Shimb Y and Kim H J 2016 Theoretical study of interactions of a \(\text{ Li }^{+}(\text{ CF }_{3}\text{ S }\text{ O }_{2})_{2}\text{ N }^{-}\) ion pair with \(\text{ CR }_{3}(\text{ OCR }_{2}\text{ CR }_{2})\text{ nOCR }_{3}\) (\(\text{ R }=\text{ H }\) or F) Phys. Chem. Chem. Phys. 18 6754

    Article  CAS  Google Scholar 

  47. Gadre S R and Bhadane P K 1998 Complexes of ammonia with propane and cyclopropane: electrostatic guidelines for ab initio treatment Theor. Chem. Acc. 100 300

    Article  CAS  Google Scholar 

  48. Pingale S S 2011 Molecular electrostatic potential for exploring \(\uppi \)-conjugation: a density-functional investigation Phys. Chem. Chem. Phys. 13 15158

    Article  CAS  Google Scholar 

  49. Gaussian 09 Revision A 02 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B and Fox D J 2009 Gaussian Inc, Wallingford CT.

  50. The topographical analysis is brought out in term of characterizing the critical points (CPs) where the first order partial derivatives of this field vanish. The CPs are represented by a notation (rank, signature) where rank is the number of nonzero eigenvalues of the Hessian matrix and signature is the algebraic sum of the signs of these eigenvalues. The non-degenerate CPs are further characterized viz., minimum (3, \(+3\)), maximum (3, \(-3\)) or saddles of types (3, \(+1\)) and (3, \(-1\)).

  51. Shirsat R N, Bapat S V and Gadre S R 1992 Molecular electrostatics: a comprehensive topographical approach Chem. Phys. Lett. 200 373

    CAS  Google Scholar 

  52. Kulkarni S A 1996 Electron correlation effects on the topography of molecular electrostatic potentials Chem. Phys. Lett. 254 268

    CAS  Google Scholar 

  53. Gadre S R, Kulkarni S A, Suresh C H and Strivastava I H 1995 Basis set dependence of the molecular electrostatic potential topography a case study of substituted benzenes Chem. Phys. Lett. 239 273

    CAS  Google Scholar 

  54. Limaye A C and Gadre S R 2001 UNIVIS-2000: An indigenously developed comprehensive visualization package Curr. Sci. (India) 80 1296

    CAS  Google Scholar 

  55. Boys S F and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  56. Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120, 215

    Article  CAS  Google Scholar 

  57. Pathak R K and Gadre S R 1990 Maximal and minimal characteristics of molecular electrostatic potentials J. Chem. Phys. 93 1770

    Article  CAS  Google Scholar 

  58. Bijina P V, Suresh C H and Gadre S R 2018 Electrostatics for probing lone pairs and their interactions J. Comput. Chem. 39 488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The APW and SSP gratefully acknowledge the Board of College and University Development (BCUD) and UPE Phase II budget, respectively, Savitribai Phule Pune University, Pune for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash S Pingale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pingale, S.S., Ware, A.P. & Gadre, S.R. Unveiling electrostatic portraits of quinones in reduction and protonation states. J Chem Sci 130, 50 (2018). https://doi.org/10.1007/s12039-018-1450-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1450-3

Keywords

Navigation