Quantitative investigation of intermolecular interactions in dimorphs of 3-Chloro-N-(2-fluorophenyl)benzamide and 2-Iodo-N-(4- bromophenyl)benzamide

  • Rahul Shukla
  • Susanta K Nayak
  • Deepak Chopra
  • M Kishore Reddy
  • Tayur N Guru Row
Regular Article


In this study, we have analyzed the role of different intermolecular interactions in the polymorphic modifications of 3-chloro-N-(2-fluorophenyl)benzamide (I) and 2-iodo-N-(4- bromophenyl)benzamide (II). The crystals were obtained via slow evaporation method with the alteration of solvents for crystallization. The already reported form [Cryst. Growth Des. (2011) 11:1578] crystallizes in P2\(_{1}\)/c with Z\(^\prime \)=2 [Form IA], while the new form crystallizes in Pna2\(_{1}\) with Z\(^\prime \)=1 [Form IB]. The latter compound crystallizes in P2\(_{1}\)/n with Z\(^\prime \)=1 [Form IIA] and in Pbca with Z\(^\prime \)=1 [Form IIB]. Weak Cl\(\cdot \cdot \cdot \)Cl and C-H\(\cdot \cdot \cdot \)F interactions in the former (IA, IB) and weak I\(\cdot \cdot \cdot \)I and C-H\(\cdot \cdot \cdot \uppi \) interactions in the latter (IIA, IIB) play a vital role in the formation of different polymorphic modifications leading to the observation of conformational and packing polymorphs, respectively. PIXEL calculations show that most of the interactions present in the crystal structures are dispersive in nature. 2D Fingerprint plots revealed that the relative contribution of different intermolecular interactions in different polymorphic forms was different.

Graphical abstract

SYNOPSIS We have analyzed the role of different intermolecular interactions and evaluated their contributions in the polymorphic modifications of 3-chloro-N-(2-fluorophenyl)benzamide (I) and 2-iodo-N-(4- bromophenyl)benzamide (II).


Halogen benzamides intermolecular interactions dispersion polymorphs 



We thank DST, India for the XRD facility at IISc, Bangalore. RS thanks DST-INSPIRE for the PhD Fellowship. SKN thanks CSIR & DST for financial assistance. DC thanks IISER Bhopal for research facilities and infrastructure.

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

12039_2018_1444_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (pdf 2382 KB)


  1. 1.
    Bernstein J 2002 Polymorphism in Molecular Crystals (Oxford: Oxford University Press)Google Scholar
  2. 2.
    Lee A Y, Erdemir E and Myerson A S 2011 Crystal polymorphism in chemical process development Annu. Rev. Chem. Biomol. Eng. 2 259CrossRefGoogle Scholar
  3. 3.
    Bernstein J 2011 Polymorphism - A Perspective Cryst. Growth Des. 11 632CrossRefGoogle Scholar
  4. 4.
    Cruz-Cabeza A J and Bernstein J 2014 Conformational Polymorphism J. Chem. Rev. 114 2170CrossRefGoogle Scholar
  5. 5.
    Bernstein J 1987 In Conformational Polymorphism In Organic Solid State Chemistry: Studies in Organic Chemistry Vol. 32 G R Desiraju (Ed.) (Elsevier: Amsterdam)Google Scholar
  6. 6.
    Nangia A 2008 Conformational Polymorphism in Organic Crystals Acc. Chem. Res. 41 595CrossRefGoogle Scholar
  7. 7.
    Braun D E, Gelbrich T, Kahlenberg V, Gerhard L, Wieser J and Griesser U J 2008 Packing polymorphism of a conformationally flexible molecule (aprepitant) New J. Chem. 32 1677Google Scholar
  8. 8.
    Phukan N and Baruah J B 2015 Polymorphs of Thiazole-Derived Imines Connected to Hydroxyaromatics Cryst. Growth Des. 15 1843CrossRefGoogle Scholar
  9. 9.
    Krishnan B P, Rai R, Asokan A and Sureshan K M 2016 Crystal-to-Crystal Synthesis of Triazole-Linked Pseudo-proteins via Topochemical Azide–Alkyne Cycloaddition Reaction J. Am. Chem. Soc. 138 14824CrossRefGoogle Scholar
  10. 10.
    Rajbongshi B K, Nair N N, Nethaji M and Ramanathan G 2012 Segregation into Chiral Enantiomeric Conformations of an Achiral Molecule by Concomitant Polymorphism Cryst. Growth Des. 12 1823CrossRefGoogle Scholar
  11. 11.
    Braun D E, Gelbrich T, Wurst K and Griesser U J 2016 Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder, and Stoichiometric 0.8-Hydrate Cryst. Growth Des. 16 3480CrossRefGoogle Scholar
  12. 12.
    Cruz-Cabeza A J, Reutzel-Edens S M and Bernstein J 2015 Facts and fictions about polymorphism Chem. Soc. Rev. 44 8619CrossRefGoogle Scholar
  13. 13.
    Desiraju G R 2008 Polymorphism: The Same and Not Quite the Same Cryst. Growth Des. 8 3CrossRefGoogle Scholar
  14. 14.
    Kulkarni S A, Meekes H and Horst J H T 2014 Polymorphism Control through a Single Nucleation Event Cryst. Growth Des. 14 1493CrossRefGoogle Scholar
  15. 15.
    Desiraju G R 2013 Crystal Engineering: From Molecule to Crystal J. Am. Chem. Soc. 135 9952CrossRefGoogle Scholar
  16. 16.
    Chung H and Diao Y J 2016 Polymorphism as an emerging design strategy for high performance organic electronics Mater. Chem. C 4 3915Google Scholar
  17. 17.
    Senju T, Nishimura N and Mizuguchi J 2007 Polymorph of 2,9-Dichloroquinacridone and Its Electronic Properties J. Phys. Chem. A 111 2966CrossRefGoogle Scholar
  18. 18.
    Erdemir D, Lee A Y and Myerson A S 2007 Polymorph selection: the role of nucleation, crystal growth and molecular modelling Curr. Opin. Drug Disc. 10 746Google Scholar
  19. 19.
    Kazmierczak M and Katrusiak A 2015 Quantitative estimate of cohesion forces CrystEngComm 17 9423CrossRefGoogle Scholar
  20. 20.
    Rajewski K W, Andrzejewski M and Katrusiak A 2016 Competition between Halogen and Hydrogen Bonds in Triiodoimidazole Polymorphs Cryst. Growth Des. 16 3869CrossRefGoogle Scholar
  21. 21.
    Makino S, Nakanishi E and Tsuji T 2003 Efficient Solid-phase Synthesis of 2,1,3-Benzothiadiazin-4-one 2-Oxides with SynPhase\(^{\rm TM}\) Lanterns Bull. Korean Chem. Soc. 24 389Google Scholar
  22. 22.
    Zhichkin P, Kesicki E, Treiberg J, Bourdon L, Ronsheim M, Ooi H C, White S, Judkins A and Fairfax D 2007 A Novel Highly Stereoselective Synthesis of 2,3-Disubstituted 3H-Quinazoline-4-one Derivatives Org. Lett. 9 1415CrossRefGoogle Scholar
  23. 23.
    Jackson S, Degrado W, Dwivedi A, Parthasarathy A, Higley A, Krywko J, Rockwell A, Markwalder J, Wells G, Wexler R, Mousa S and Harlow R J 1994 Template-Constrained Cyclic Peptides: Design of High-Affinity Ligands for GPIIb/IIIa J. Am. Chem. Soc. 116 3220CrossRefGoogle Scholar
  24. 24.
    Capdeville R, Buchdunger E, Zimmermann J and Matter A 2002 Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug Nat. Rev. Drug Discov. 1 493CrossRefGoogle Scholar
  25. 25.
    Wada K, Murata T, Shibuya K and Shimojo E 2011 Benzanilides with insecticidal activity US Patent, 20100062937A1Google Scholar
  26. 26.
    Burgi H B and Dunitz J D 1970 Crystal and Molecular Structures of Benzylideneaniline, Benzylideneaniline-p-carboxylic acid and p-Methylbenzylidene-p-nitriloaniline Helv. Chim. Acta 52 1747CrossRefGoogle Scholar
  27. 27.
    Burgi H B and Dunitz J D 1971 Multiple Solutions of Crystal Structures by Direct Methods Acta Crystallogr. A27 117Google Scholar
  28. 28.
    Chopra D and Guru Row T N 2005 Dimorphic Forms in a Non-Centrosymmetric Environment from a Prochiral Molecule:? Cooperative Interplay of Strong Hydrogen Bonds and Weak Intermolecular Interactions Cryst. Growth Des. 5 1679CrossRefGoogle Scholar
  29. 29.
    Chopra D and Guru Row T N 2008 Disorder Induced Concomitant Polymorphism in 3-Fluoro-N-(3-fluorophenyl)benzamide Cryst. Growth Des. 8 848CrossRefGoogle Scholar
  30. 30.
    Nayak S K, Reddy M K and Guru Row T N 2009 4-Chloro-N-(3-chlorophenyl) benzamide Acta Cryst. E65 o2434Google Scholar
  31. 31.
    Nayak S K, Reddy M K, Guru Row T N and Chopra D 2011 Role of Hetero-Halogen (F\(\cdot \cdot \cdot \)X, X = Cl, Br, and I) or Homo-Halogen (X\(\cdot \cdot \cdot \)X, X = F, Cl, Br, and I) Interactions in Substituted Benzanilides Cryst. Growth Des. 11 1578CrossRefGoogle Scholar
  32. 32.
    Nayak S K, Reddy M K, Chopra D and Guru Row T N 2012 Evaluation of the role of disordered organic fluorine in crystal packing: insights from halogen substituted benzanilides CrystEngComm 14 200CrossRefGoogle Scholar
  33. 33.
    Panini P and Chopra D 2012 Role of intermolecular interactions involving organic fluorine in trifluoromethylated benzanilides CrystEngComm 14 1972CrossRefGoogle Scholar
  34. 34.
    Panini P and Chopra D 2014 Experimental and Theoretical Characterization of Short H-Bonds with Organic Fluorine in Molecular Crystals Cryst. Growth Des. 14 3155CrossRefGoogle Scholar
  35. 35.
    Panini P, Bhandary S and Chopra D 2016 Exploiting the Role of Molecular Electrostatic Potential, Deformation Density, Topology, and Energetics in the Characterization of S\(\cdot \cdot \cdot \)N and Cl\(\cdot \cdot \cdot \)N Supramolecular Motifs in Crystalline Triazolothiadiazoles Cryst. Growth Des. 16 2561CrossRefGoogle Scholar
  36. 36.
    SMART (V 5.628), SAINT (V 6.45a), SADBS, XPREP, SHELXTL; Bruker AXS Inc.; Madison, WI, 2004Google Scholar
  37. 37.
    Oxford Diffraction 2009 CrystAlis CCD and CrystAlis RED, Version Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.Google Scholar
  38. 38.
    Sheldrick G M 2008 A Short History of SHELX . Acta Crystallographica. Acta Crystallographica Acta Cryst. A64 112CrossRefGoogle Scholar
  39. 39.
    Farrugia L J 1999 WinGX suite for small-molecule single-crystal crystallography WinGX (V 1.70.01) J. Appl. Crystallogr. 32 837CrossRefGoogle Scholar
  40. 40.
    Macrae C F, Bruno I J, Chisholm J A, Edgington P R, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Streek J and Wood P A 2008 Mercury CSD 2.0 –new features for the visualization and investigation of crystal structures J. Appl. Crystallogr. 41 466 []Google Scholar
  41. 41.
    Nardelli M J 1995 PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses Appl. Crystallogr. 28 659CrossRefGoogle Scholar
  42. 42.
    Spek A L 2009 Structure validation in chemical crystallography Acta Crystallogr. D65 148Google Scholar
  43. 43.
    Gavezzotti A 2011 Efficient computer modelling of organic materials. The atom–atom, Coulomb–London–Pauli (AA-CLP) model for intermolecular electrostatic-polarization, dispersion and repulsion energies New J. Chem. 35 1360CrossRefGoogle Scholar
  44. 44.
    Gavezzotti A 2008 Non-conventional bonding between organic molecules. The ‘halogen bond’ in crystalline systems Mol. Phys. 106 1473CrossRefGoogle Scholar
  45. 45.
    Maschio L, Civalleri B, Ugliengo P and Gavezzotti A 2011 Intermolecular Interaction Energies in Molecular Crystals: Comparison and Agreement of Localized Møller–Plesset 2, Dispersion-Corrected Density Functional, and Classical Empirical Two-Body Calculations J. Phys. Chem. A 115 11179CrossRefGoogle Scholar
  46. 46.
    Panini P, Gonnade R G and Chopra D 2016 Experimental and computational analysis of supramolecular motifs involving Csp\(^{2}\)(aromatic)–F and CF\(_{3}\) groups in organic solids New J. Chem. 40 4981CrossRefGoogle Scholar
  47. 47.
    Shukla R, Mohan T P, Vishalakshi B and Chopra D 2014 Experimental and theoretical analysis of lp\(\cdots \pi \) intermolecular interactions in derivatives of 1,2,4-triazoles CrystEngComm 16 1702CrossRefGoogle Scholar
  48. 48.
    Shukla R, Mohan T P, Vishalakshi B and Chopra D 2017 Synthesis, crystal structure and theoretical analysis of intermolecular interactions in two biologically active derivatives of 1,2,4-triazoles J. Mol. Struct. 1134 426CrossRefGoogle Scholar
  49. 49.
    Feller D 1996 The role of databases in support of computational chemistry calculations J. Comput. Chem. 17 1571CrossRefGoogle Scholar
  50. 50.
    Schuchardt K L, Didier B T, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J and Windus T L 2007 Basis set exchange: a community database for computational sciences J. Chem. Inf. Model 47 1045CrossRefGoogle Scholar
  51. 51.
    Spackman M A and McKinnon J J 2002 Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 4 378CrossRefGoogle Scholar
  52. 52.
    McKinnon J J, Jayatilaka D and Spackman M A 2007 Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem. Commun. 37 3814Google Scholar
  53. 53.
    Wolff S K, Grimwood D J, McKinnon J J, Turner M J, Jayatilaka D and Spackman M A 2012 CrystalExplorer Version 3.1 University of Western Australia, Crawley AustraliaGoogle Scholar
  54. 54.
    McKinnon J J, Fabbiani F P A and Spackman M A 2007 Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis Cryst. Growth Des. 7 755CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Science Education and ResearchBhopalIndia
  2. 2.Department of ChemistryVisvesvaraya National Institute of TechnologyNagpurIndia
  3. 3.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations