Non-oxidative methane dehydroaromatization reaction over highly active \({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{x} }\) ZSM-5 derived from pretreatment

  • Pradeep Kumar Budde
  • Arvind Kumar Singh
  • Sreedevi Upadhyayula
Regular Article


The catalytic active-phase of reduced Mo species plays a vital role in non-oxidative methane dehydroaromatization (MDA) reaction. Pretreatment effect of one of the gases containing \(\hbox {N}_{2}\), \(\hbox {H}_{2}\) and (90 vol%) \(\hbox {CH}_{4}+\hbox {H}_{2}\) over 15% Mo-loaded HZSM-5 catalyst has been investigated in the present work. Various spectroscopic investigations viz., XRD, TPR, TPO, XPS, etc., show that the pretreatment of 15% Mo-HZSM-5 catalyst with (90 vol%) \(\hbox {CH}_{4}+\hbox {H}_{2}\) gas stream exclusively leads to the formation of \(\hbox {MoO}_{\mathrm{x}}\hbox {C}_{\mathrm{y}}\hbox {H}_{\mathrm{z}} \)which acts as precursor moieties for the formation of highly active metastable fcc (\({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{X}})\) and \(\hbox {MoO}_{\mathrm{x}}\hbox {C}_{\mathrm{y}}\) phases during the induction period. Comparatively, \(\hbox {H}_{2}\) and \(\hbox {N}_{2}\)-pretreated catalysts showed major formation of hcp (\(\upbeta \)-\(\hbox {Mo}_{2}\hbox {C}\)) species that are found to be a less-active phase in MDA reaction. The active fcc (\({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{X}})\) phases are immune to inert coking and assist primary ethylene products formed on carbonized Mo associated Brønsted acid sites to travel in the zeolite channels which is further aromatized over Brønsted acid sites deep inside the channels. XPS analysis of the catalyst shows that \({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{x}}\) and \(\upbeta \)-\(\hbox {Mo}_{2}\hbox {C}\) are major catalytic phases that are covered with graphitic carbon and amorphous carbon present on the surface. The active phases \({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{x}}\) and \(\hbox {MoO}_{\mathrm{x}}\hbox {C}_{\mathrm{y}}\), associated with Brønsted acid sites along with the vacant Brønsted acid sites in catalyst pretreated with (90 vol%) \(\hbox {CH}_{4}+\hbox {H}_{2}\) mixture are responsible for high activity in methane conversion (\(\sim \)13%), excellent aromatic selectivity (38%), and high stability of the catalyst.

Graphical Abstract

The catalytically active \({\upalpha }\)-MoC\(_{1{-}}\)x phase over 15% Mo-HZSM-5-A is more immune to coking than \(\upbeta \)-\(\hbox {Mo}_{2}\hbox {C}\) phase over 15% Mo-HZSM-5-B and 15% Mo-HZSM-5-C. The active phases, \({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{x}} \) and \(\hbox {MoO}_{\mathrm{x}}\hbox {C}_{\mathrm{y}}\), associated with Brønsted acid sites in 15% Mo-HZSM-5-A is responsible for high activity in methane conversion (\(\sim \)13%), excellent aromatic selectivity (38%), and high stability of the catalyst.


Molybdenum oxycarbide dehydroaromatization \(\hbox {Mo}_{2}\hbox {C}\) \({\upalpha }\)-\(\hbox {MoC}_{1{-}\mathrm{X}}\) 



The authors would like to thank Prof. S. Maity, Dept. of Chemical Engineering, IIT Hyderabad for the TPD measurement, and Dr. Dhaka Rajendra, IIT Ropar for the XPS measurements. AKS is thankful to SERB India for NPDF (File No. PDF/2016/003484) grant.

Supplementary material

12039_2018_1432_MOESM1_ESM.pdf (201 kb)
Supplementary material 1 (pdf 200 KB)


  1. 1.
    Lunsford J H 2000 Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21\(^{\rm st}\) century Catal. Today 63 165CrossRefGoogle Scholar
  2. 2.
    Ismagilov Z R, Matus E V and Tsikoza L T 2008 Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives Energy Environ. Sci. 1 526CrossRefGoogle Scholar
  3. 3.
    Solymosi F, Erdöhelyi A and Szöke A 1995 Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane Catal. Lett. 32 43CrossRefGoogle Scholar
  4. 4.
    Szoke A and Solymosi F 1996 Selective oxidation of methane to benzene over \(\text{ K }_{2}\text{ MoO }_{4}\)/ZSM-5 catalysts Appl. Catal. A Gen. 142 361CrossRefGoogle Scholar
  5. 5.
    Solymosi F, Szöke A and Cserenyi J 1996 Conversion of methane to benzene over \(\text{ Mo }_{2}\text{ C }\) and Mo2C/ZSM-5 catalysts Catal. Lett. 39 157CrossRefGoogle Scholar
  6. 6.
    Wang D, Lunsford J H and Rosynek M P 1996 Catalytic conversion of methane to benzene over Mo/ZSM-5 Top. Catal. 3 289CrossRefGoogle Scholar
  7. 7.
    Weckhuysen B M, Rosynek M P and Lunsford J H 1998 Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts Catal. Lett. 52 31CrossRefGoogle Scholar
  8. 8.
    Borry R W, Kim Y H, Huffsmith A, Reimer J A and Iglesia E 1999 Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion J. Phys. Chem. B 103 5787CrossRefGoogle Scholar
  9. 9.
    Kim Y H, Borry R W and Iglesia E 2000 Genesis of methane activation sites in Mo-exchanged H-ZSM-5 catalysts Micropor. Mesopor. Mat. 35–36 495CrossRefGoogle Scholar
  10. 10.
    Li W, Meitzner G D, Borry R W and Iglesia E 2000 Raman and X-ray absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative \(\text{ CH }_{4}\) reactions J. Catal. 191 373CrossRefGoogle Scholar
  11. 11.
    Ding W, Li S, Meitzner G D and Iglesia E 2001 Methane conversion to aromatics on Mo/H-ZSM5: Structure of molybdenum species in working catalysts J. Phys. Chem. B 105 506CrossRefGoogle Scholar
  12. 12.
    Ding W, Meitzner G D and Iglesia E 2002 The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H–ZSM5 J. Catal. 206 14CrossRefGoogle Scholar
  13. 13.
    Ma D, Zhang W, Shu Y, Liu X, Xu Y and Bao X 2000 MAS NMR, ESR and TPD studies of Mo/HZSM-5 catalysts: Evidence for the migration of molybdenum species into the zeolitic channels Catal. Lett. 66 155CrossRefGoogle Scholar
  14. 14.
    Mamonov N A, Fadeeva E V, Grigoriev D A, Mikhailov M N, Kustov L M and Alkhimov S A 2013 Metal/zeolite catalysts of methane dehydroaromatization Russ. Chem. Rev. 82 567CrossRefGoogle Scholar
  15. 15.
    Liu B S, Zhang Y, Liu J F, Tian M, Zhang, F M and Au C T 2011 Characteristic and mechanism of methane dehydroaromatization over Zn-based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion J. Phys. Chem. C 115 16954CrossRefGoogle Scholar
  16. 16.
    Ma D, Shu Y, Zhang C, Han W, Xiuwen Xu X and Bao Y 2001 Synthesis and characterization of galloaluminosilicate/gallosilicalite (MFI) and their evaluation in methane dehydro-aromatization J. Mol. Catal. A Chem. 168 139CrossRefGoogle Scholar
  17. 17.
    Luzgin M V, Gabrienko A A, Rogov V A, Toktarev A V, Parmon V N and Stepanov A G 2010 The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: \(^{13}\)C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane J. Phys. Chem. C 114 21555CrossRefGoogle Scholar
  18. 18.
    Chu N, Yang J, Li C, Zhao Q, Yin X, Lu J and Wang J 2009 An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Micropor. Mesopor. Mat. 118 169CrossRefGoogle Scholar
  19. 19.
    Su L, Liu L, Zhuang J, Wang H, Li Y, Shen W and Bao Y X 2003 Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts Catal. Lett. 91 155CrossRefGoogle Scholar
  20. 20.
    Garza J M, Gerwien D E, Morris D, Hamilton J R, Marshall L L and Musallam W Y et al. 2015 Process for the aromatization of a methane-containing gas stream US 20150099914 A1Google Scholar
  21. 21.
    Iaccino L L, Stavens E L, Sangar N and Patt J J 2007 Production of aromatics frommethane. US 2007/0249880 A1, 2007Google Scholar
  22. 22.
    Iaccino L L, Stavens E L, Sangar N and Patt J J 2010 Production of aromatics frommethane. US 2010/0305374 A1Google Scholar
  23. 23.
    Liu S and Dong Q 1998 Unique promotion effect of CO and \(\text{ CO }_{2}\) on the catalytic stability for benzene and naphthalene production from methane on Mo/HZSM-5 catalysts Chem. Commun. 1217Google Scholar
  24. 24.
    Bouchy C, Schmidt I, Anderson J R, Jacobsen C J H, Derouane E G and Hamid S B Derouane-Abd 2000 Metastable fcc-MoC(1\(-\)x) supported on HZSM5: Preparation and catalytic performance for the non-oxidative conversion of methane to aromatic compounds J. Mol. Catal. A Chem. 163 283CrossRefGoogle Scholar
  25. 25.
    Liu S, Ohnishi R and Ichikawa M 2003 Promotional role of water added to methane feed on catalytic performance in the methane dehydroaromatization reaction on Mo/HZSM-5 catalyst J. Catal. 220 57CrossRefGoogle Scholar
  26. 26.
    Lacheen H S and Iglesia E 2005 Isothermal activation of \(\text{ Mo }_{2}\text{ O }_{5}^{2+}\)-ZSM-5 precursors during methane reactions: effects of reaction products on structural evolution and catalytic properties Phys. Chem. Chem. Phys. 7 538CrossRefGoogle Scholar
  27. 27.
    Liu J F, Liu Y and Peng L F 2008 Aromatization of methane by using propane as co-reactant over cobalt and zinc-impregnated HZSM-5 catalysts J. Mol. Catal. A Chem. 280 7CrossRefGoogle Scholar
  28. 28.
    Toosi M R, Sabour B, Hamuleh T and Peyrovi M H 2010 Methane dehydroaromatization over Mo and W catalysts supported on HZSM-5: The effect of preactivation and use of the \(\text{ CH }_{4}\)/\(\text{ H }_{2 }\)cycle React. Kinet. Mech. Catal. 101 221CrossRefGoogle Scholar
  29. 29.
    Xu Y, Lu J, Suzuki Y, Ma H and Yamamoto Y 2013 Performance of a binder-free, spherical-shaped Mo/HZSM-5 catalyst in the non-oxidative \(\text{ CH }_{4}\) dehydroaromatization in fixed- and fluidized-bed reactors under periodic \(\text{ CH }_{4}\)-\(\text{ H }_{2}\) switch operation Chem. Eng. Process. 72 90CrossRefGoogle Scholar
  30. 30.
    Kosinov N, Coumans F J A G, Uslamin E, Kapteijn F and Hensen E J M 2016 Methane dehydroaromatization selective coke combustion by oxygen pulsing during Mo/ZSM-5-catalyzed methane dehydroaromatization Angew. Chem. Int. Edit. 55 15086CrossRefGoogle Scholar
  31. 31.
    Song Y, Zhang Q, Xu Y, Zhang Y, Matsuoka K and Zhang Z-G 2017 General coke accumulation and deactivation behavior of microzeolite-based Mo/HZSM-5 in the non-oxidative methane aromatization under cyclic \(\text{ CH }_{4}\) -\(\text{ H }_{2}\) feed switch mode Appl. Catal. A Gen. 530 12CrossRefGoogle Scholar
  32. 32.
    Wang D, Lunsford J H and Rosynek M P 1997 Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene J. Catal. 169 347CrossRefGoogle Scholar
  33. 33.
    Ertl G, Knözinger H, Schüth F and Weitkamp J 2008 In Handbook of Heterogeneous Catalysis Vol. 1 pp. 1–720Google Scholar
  34. 34.
    Miller R L, Ettre L S and Johansen N G 1983 Quantitative analysis of hydrocarbons by structural gasolines and distillates J. Chromatogr. 264 19CrossRefGoogle Scholar
  35. 35.
    Liu S, Wang L, Ohnishi R and Ichikawa M 1999 Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/ MASS/FTIR characterization and supporting effects J. Catal. 181 175CrossRefGoogle Scholar
  36. 36.
    Weckhuysen B M, Wang D, Rosynek M P and Lunsford J H 1998 Conversion of methane to benzene over transition metal ion ZSM-5 zeolites J. Catal. 175 347CrossRefGoogle Scholar
  37. 37.
    Larachi F, Oudghiri-Hassani H, Iliuta M C, Grandjean B P A and Mc Breen P H 2002 Ru-Mo/HZSM-5 catalyzed methane aromatization in membrane reactors Catal. Lett. 84 183CrossRefGoogle Scholar
  38. 38.
    Shu Y, Ma D, Xu L, Xu Y and Bao X 2000 Methane dehydro-aromatization over Mo/MCM-22 catalysts: a highly selective catalyst for the formation of benzene Catal. Lett. 70 67CrossRefGoogle Scholar
  39. 39.
    Xu Y, Shu Y, Liu S, Huang J and Guo X 1995 Interaction between ammonium heptamolybdate and \(\text{ NH }_{4}\)ZSM-5 zeolite: The location of Mo species and the acidity of Mo/HZSM-5 Catal. Lett. 35 233CrossRefGoogle Scholar
  40. 40.
    Xu Y, Liu S, Guo X, Wang L and Xie M 1995 Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts Catal. Lett. 30 135CrossRefGoogle Scholar
  41. 41.
    Hanif A, Xiao T, York A P E, Sloan J and Green M L H 2002 Study on the structure and formation mechanism of molybdenum carbides Chem. Mater. 14 1009CrossRefGoogle Scholar
  42. 42.
    Bouchy C, Pham-Huu C, Heinrich B, Chaumont C and Ledoux M J 2000 Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes: a molybdenum oxycarbide J. Catal. 190 92CrossRefGoogle Scholar
  43. 43.
    Yuan S, Bee S, Hamid D, Li Y, Ying P, Xin Q, Derouane E G and Li C 2002 Preparation of \(\text{ Mo }_{2}\text{ C }\)/HZSM-5 and its catalytic performance for the conversion of n-butane into aromatics J. Mol. Catal. A Chem. 184 257CrossRefGoogle Scholar
  44. 44.
    Arnoldy P, de Jonge J C M and Moulijn J A 1985 Temperature-programmed reduction of \(\text{ MoO }_{3}\), and \(\text{ MoO }_{2}\) J. Phys. Chem. 89 4517CrossRefGoogle Scholar
  45. 45.
    Corder R L, Llambias F J and Gil A L A 1991 Temperature-programmed reduction and zeta potential studies of the structure of \(\text{ MoO }_{3}\)/\(\text{ Al }_{2}\text{ O }_{3}\), and \(\text{ MoO }_{3}\)/\(\text{ SiO }_{2}\) catalysts Effect of the impregnation pH and molybdenum loading Appl. Appl. Catal. 74 125CrossRefGoogle Scholar
  46. 46.
    Regalbuto J R and Ha J 1994 A corrected procedure and consistent interpretation for temperature programmed reduction of supported \(\text{ MoO }_{3}\) Catal. Lett. 29 189CrossRefGoogle Scholar
  47. 47.
    Jiang H, Wang L S, Cui W and Xu Y D 1999 Study on the induction period of methane aromatization over Mo/HZSM-5: Partial reduction of Mo species and formation of carbonaceous deposit Catal. Catal. Lett. 57 95CrossRefGoogle Scholar
  48. 48.
    Bond G C and Tahir S F 1993 Structure and reactivity of titania-supported oxides. V. Influence of phosphorus and potassium impurities on the properties of molybdenum oxide supported on titania Appl. Catal. A Gen. 105 281CrossRefGoogle Scholar
  49. 49.
    Williams C C, Ekerdt J G, Jehng J M, Hardcastle F D and Wachs I E 1991 A Raman and ultravlolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide J. Phys. Chem. 95 8791CrossRefGoogle Scholar
  50. 50.
    Barath F, Turki M, Keller V and Maire G 1999 Catalytic activity of reduced \(\text{ MoO }_{3}\)/\({\upalpha }\) -\(\text{ Al }_{2}\text{ O }_{3}\) for hexanes reforming J. Catal. 185 1CrossRefGoogle Scholar
  51. 51.
    Topsøe N-Y, Pedersen K and Derouane E G 1981 Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5 type zeolites J. Catal. 70 41CrossRefGoogle Scholar
  52. 52.
    Shu Y, Ma D, Bao X and Xu Y 2000 Methane dehydro-aromatization over a Mo/phosphoric rare earth-containing penta-sil type zeolite in the absence of oxygen Catal. Lett. 66 161CrossRefGoogle Scholar
  53. 53.
    Hidalgo C V, Itoh H, Hattori T, Niwa M and Murukami Y 1984 Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia J. Catal. 85 362CrossRefGoogle Scholar
  54. 54.
    Meshram N R, Hegde S G and Kulkarni S B 1986 Active sites on ZSM-5 zeolites for toluene disproportionation Zeolites 6 434CrossRefGoogle Scholar
  55. 55.
    Xu Y, Liu W, Wong S-T, Wan L and Guo X 1996 Dehydrogenation and aromatization of methane in the absence of oxygen on Mo/HZSM-5 catalysts before and after \(\text{ NH }_{4}\)OH extraction Catal. Lett. 40 207CrossRefGoogle Scholar
  56. 56.
    Li B, Li S, Li N, Chen H, Zhang W, Bao X and Lin B 2006 Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization Micropor. Mesopor. Mat. 88 244CrossRefGoogle Scholar
  57. 57.
    Ezzamarty A, Catherine E, Cornet D, Hemidy J F, Janin A, Lavalley J C, Leglise J and Meriaudea P 1989 Characterization and sulfidation of stabilized HY zeolites containing Ni, Mo and the NiMo association, Mo and the NiMo Association Stud. Surf. Sci. Catal. 49 pp. 1025–1034CrossRefGoogle Scholar
  58. 58.
    Balkrishnan I, Rao B S, Hegde S G, Kotasthane A N and Kulkarni S B and Ratnaswamy P 1982 Catalytic activity and selectivity in the conversion of methanol to light olefins J. Mol. Catal. 17 261CrossRefGoogle Scholar
  59. 59.
    Rajgopal S, Marzari J A and Miranda R 1995 Silica-alumina-supported Mo oxide catalysts: Genesis and demise of Bronsted-Lewis acidity J. Catal. 151 192CrossRefGoogle Scholar
  60. 60.
    Ma D, Shu Y, Bao X and Xu Y 2000 Methane dehydro-aromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: EPR study of the Mo species on/in the HZSM-5 zeolite J. Catal. 189 314CrossRefGoogle Scholar
  61. 61.
    Linsheng W, Longxiang T, Maosong X and Guifen Xu 1993 Dehydrogenation and aromatization of methane under non oxidizing conditions Catal. Lett. 21 35CrossRefGoogle Scholar
  62. 62.
    Matus E V, Ismagilov I Z, Sukhova O B, Zaikovskii V I, Tsikoza L T and Ismagilov Z R 2007 Study of methane dehydroaromatization on impregnated Mo/ZSM-5 catalysts and characterization of nanostructured molybdenum phases and carbonaceous deposits Ind. Ind. Eng. Chem. Res. 46 4063CrossRefGoogle Scholar
  63. 63.
    Ma D, Wang D, Su L, Shu Y, Xu Y and Bao X 2002 Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization: A TP technique investigation J. Catal. 208 260CrossRefGoogle Scholar
  64. 64.
    Liu H, Li T, Tian B and Xu Y 2001 Study of the carbonaceous deposits formed on a Mo/HZSM-5 catalyst in methane dehydro-aromatization by using TG and temperature-programmed techniques Appl. Catal. A Gen. 213 103CrossRefGoogle Scholar
  65. 65.
    Ma D, Shu Y, Cheng M, Xu Y and Bao X 2000 On the induction period of methane aromatization over Mo-based catalysts J. Catal. 194 105CrossRefGoogle Scholar
  66. 66.
    Liu H, Su L, Wang H, Shen W, Bao X and Xu Y 2002 The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts Appl. Catal. A Gen. 236 263CrossRefGoogle Scholar
  67. 67.
    Xu Y, Wang J, Suzuki Y and Zhang Z-G 2014 Effect of transition metal additives on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization under periodic \(\text{ CH }_{4}\)-\(\text{ H }_{2 }\) switch operation at 1073 K Appl. Catal. A Gen. 409-410 181Google Scholar
  68. 68.
    Liu H, Bao X and Xu Y 2006 Methane dehydroaromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: Identification and preparation of the Mo active species J. Catal. 239 441CrossRefGoogle Scholar
  69. 69.
    Tempelman C H L and Hensen E J M 2015 Environmental On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction Appl. Catal. B Environ. 176–177 731CrossRefGoogle Scholar
  70. 70.
    Solymosi F, Cserényi J, Szöke A, Ba’nsa’gi T and Oszko’ A 1997 Aromatization of methane over supported and unsupported Mo-based catalysts J. Catal. 165 150CrossRefGoogle Scholar
  71. 71.
    Tang S, Chen H, Lin J and Tan K L 2001 Non-oxidative conversion of methane to aromatics over modified Mo/HZSM5 catalysts Catal. Commun. 2 31CrossRefGoogle Scholar
  72. 72.
    Wong S-T, Xu Y, Wang L, Liu S, Li G, Xie M and Guo X 1996 Methane and ethane activation without adding oxygen: promotional effect of W in Mo-W/HZSM-5 Catal. Lett. 38 39CrossRefGoogle Scholar
  73. 73.
    Ledoux M J, Huu C P, Guille J and Dunlopt H 1992 Compared activities of platinum and high specific surface area \(\text{ Mo }_{2}\text{ C }\) and WC catalysts for reforming reactions J. Catal. 134 383CrossRefGoogle Scholar
  74. 74.
    Wagner C D and Taylor J A 1980 Generation of XPS Auger lines by bremsstrahlung J. Electron. Spectrosc. 20 83CrossRefGoogle Scholar
  75. 75.
    Liu B S, Jiang L, Sun H and Au C T 2007 XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga-Mo/ZSM-5 catalyst Appl. Surf. Sci. 253 5092CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Heterogeneous Catalysis and Reaction Engineering Laboratory, Department of Chemical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations