A novel Mn(II) oxalato-bridged 2D coordination polymer: synthesis, crystal structure, spectroscopic, thermal and magnetic properties

Regular Article
  • 43 Downloads

Abstract

Besides the fact that direct synthesis of oxalate-based Mn(II) complexes did not succeed a lot due to the high insolubility of manganese oxalate \((\hbox {Mn}^{\mathrm{II}}(\hbox {C}_{2}\hbox {O}_{4})\cdot \hbox {2H}_{2}\hbox {O})\), a new 2D polymeric Mn(II) salt has been synthesized by slow evaporation at room temperature and its structure has been determined by single-crystal X-ray diffraction. The structure was solved by direct methods and refined to conventional agreement indices. The crystal structure is built from anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged Mn(II) ions, interleaved by 2,6-diaminopyridinium cations that are entrapped between the layers. The interactions between adjacent layers result from the extended network of intermolecular hydrogen bonds created by the mentioned cations and water molecules. The complex has been fully characterized by single crystal X-ray diffraction, FT-IR and UV–Vis spectroscopy, Rietveld refinement, TGA–DSC analysis and magnetic susceptibility. The title compound exhibits antiferromagnetic coupling between Mn(II) centres.

Graphical Abstract

SYNOPSIS A new 2D polymeric oxalate-based Mn(II) salt has been synthesized by slow evaporation at room temperature and its structure has been determined by single-crystal X-ray diffraction. The crystal structure is built from anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged Mn(II) ions, interleaved by 2,6-diaminopyridinium cations that are entrapped between the layers.

Keywords

2D coordination polymer manganese oxalate magnetism 

Notes

Acknowledgements

Financial support from the Ministry of Higher Education and Scientific Research of Tunisia is gratefully acknowledged. H. S. also thanks, Dr. Elisa Barea (Department of Inorganic Chemistry, University of Granada) for support and advice during her short-term stay in the University of Granada, where most of the characterization of the reported compound was conducted.

Supplementary material

12039_2018_1427_MOESM1_ESM.pdf (199 kb)
Supplementary material 1 (pdf 198 KB)
12039_2018_1427_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (docx 24 KB)
12039_2018_1427_MOESM3_ESM.pdf (277 kb)
Supplementary material 3 (pdf 277 KB)

References

  1. 1.
    Huang Y J, Pan Y R, Du G and Cao Y X 2016 Extended structures of two coordination polymers based on 1,10-phenanthroline derivatives: Preparation, structural characterization and properties J. Chem. Sci. 128 459CrossRefGoogle Scholar
  2. 2.
    Lin H, Lu H, Le M, Luan J, Wang X and Liu G 2015 Three 2 D copper(II)/cadmium(II) coordination polymers based on semi-rigid/flexible bis-pyridyl-bis-amide ligands and 5-aminoisophthalate: Syntheses, structures and properties J. Chem. Sci. 127 1275CrossRefGoogle Scholar
  3. 3.
    Lin H, Sun J, Liu G, Wang X and Chen P 2017 Self-assembly, structures and properties of three new Ni(II) coordination polymers derived from two different bis-pyridyl-bis-amide ligands and two aromatic polycarboxylates J. Chem. Sci. 129 9CrossRefGoogle Scholar
  4. 4.
    Sarma B, Bharali S and Das D K 2016 Synthesis, crystal structure and Thermogravimetry of ortho-phthalic acid bridged coordination polymer of Copper(II) J. Chem. Sci. 128 899CrossRefGoogle Scholar
  5. 5.
    Sutradhar D, Chowdhury H, Koner S, Roy S and Ghosh B K 2016 Two new hexacoordinated coordination polymers of cadmium(II) containing bridging units only: Syntheses, structures and molecular properties J. Chem. Sci. 128 1377CrossRefGoogle Scholar
  6. 6.
    Thatituri S, Govindugari B and Chittireddy V R R 2017 Carboxylate-bridged Cu(II) coordination polymeric complex: synthesis, crystal structure, magnetic properties, DNA binding and electrochemical studies J. Chem. Sci. 129 1171CrossRefGoogle Scholar
  7. 7.
    García-Couceiro U, Olea D, Castillo O, Luque A, Román P, De Pablo P J, Gómez-Herrero J and Zamora F 2005 Scanning Probe Microscopy Characterization of Single Chains Based on a One-Dimensional Oxalato-Bridged Manganese(II) Complex with 4-Aminotriazole Inorg. Chem. 44 8343Google Scholar
  8. 8.
    Decurtins S, Schmalle H W, Schneuwly P and Oswald H R 1993 Photochemical Synthesis and Structure of a 3-Dimensional Anionic Polymeric Network of an Iron(II) Oxalato Complex with Tris(2,2’-bipyridine)iron(II) Cations Inorg. Chem. 32 1888Google Scholar
  9. 9.
    Decurtins S, Schmalle H W, Schneuwly P, Ensling J and Gütlich P 1994 A Concept for the Synthesis of 3-Dimensional Homo- and Bimetallic Oxalate-Bridged Networks \([\text{M}_{2}(\text{ ox })_{3}]_{\text{ n }}\). Structural, Mössbauer, and Magnetic Studies in the Field of Molecular-Based Magnets J. Am. Chem. Soc. 116 9521Google Scholar
  10. 10.
    Duan C, Luo D, Shang R and Lin Z 2013 Solvent-free synthesis of new manganese phosphate–oxalate hybrid solids CrystEngComm 15 5602CrossRefGoogle Scholar
  11. 11.
    Decurtins S, Schmalle H W, Schneuwly P, Zheng L M, Ensling J and Hauser A 1995 Synthesis, Crystal Structure, and Optical and Magnetic Properties of a Novel Two-Dimensional Copper(II) Network Formed Conjointly with \({\upmu }\)-Bipyrimidine, \({\upmu }\) -Oxalato, and \({\upmu }\) -Chloro Ligands Inorg. Chem. 34 5501Google Scholar
  12. 12.
    Castillo O, Alonso J, García-Couceiro U, Luque A and Román P 2003 A 2D polymer constructed through bridging oxalato and 4,4’-bipyridine ligands: crystal structure and magnetic behavior of \([\text{ Cu }_{3}({\upmu }-\text{ ox })_{3}({\upmu }-4,4^{{\prime }}-\text{ bpy })_{2} (4,4^{{\prime }}-\text{ bpy })_{2}]_{\text{ n }}\) Inorg. Chem. Commun. 6 803Google Scholar
  13. 13.
    Glerup J, Goodson P A, Hodgson D J and Michesen K 1995 Magnetic Exchange through Oxalate Bridges: Synthesis and Charachterisation of (\({\upmu }\)-Oxalato)dimetal(II) Complexes of Manganese, Iron, Cobalt, Nickel, Copper, and Zinc Inorg. Chem. 34 6255Google Scholar
  14. 14.
    Schulz H 1974 Average and Structure of \(\text{ K }_{2}\text{ Mn }(\text{ C }_{2}0_{4})_{2}\). \(\text{2H }_{2}\text{ O }\) Acta Crystallogr., Sect. B 30 1318CrossRefGoogle Scholar
  15. 15.
    Siddiqui K A, Mehrotra G K and Mrozinski J 2011 Cation-templated 2-D Mn(II)–oxalate framework with an acyclic tetrameric water cluster J. Coord. Chem. 64 2367CrossRefGoogle Scholar
  16. 16.
    Li K K, Zhang C and Xu W 2011 \({\upmu }\)-Oxalato-bis[bis(2,2’-bipyridine)-manganese(II)] bis(perchlorate) 2,2’-bipyridine solvate Acta Crystallogr., Sect. E 67 m1443CrossRefGoogle Scholar
  17. 17.
    Feng X, Liu J, Chen J L, Huo S Z, Wang L Y and Ng S W 2014 A unique manganese (II) 2D polymer containing 2,5-di(\(2^{\prime } ,4^{\prime }\)-dicarboxylphenyl) pyridine and oxalate mixed ligands: Structure and magnetic property Inorg. Chem. Commun. 50 42Google Scholar
  18. 18.
    Yoshitake M, Kubo K, Endo T, Noro S I, Akutagawa T and Nakamura T 2016 Structural Design of Coordination Polymers Based on Manganese and Chromium Ions Bridged by Oxalate Ligands Bull. Chem. Soc. Jpn. 89 354CrossRefGoogle Scholar
  19. 19.
    Deguenon D, Bernardinelli G, Tuchagues J P and Castan P 1990 Molecular Crystal Structure and Magnetic Properties of (Croconato)- and (Oxalato)manganese(II) Complexes Inorg. Chem. 29 3031Google Scholar
  20. 20.
    Abu Youssef M A M, Mautner F A and Vicente R 2008 Two new 2D \({\upmu }\)-azido, \({\upmu }\)-oxalato manganese(II) complexes. Synthesis, structure and magnetic properties Inorg. Chim. Acta 361 2895CrossRefGoogle Scholar
  21. 21.
    Mon M, Grancha T, Verdaguer M, Train C, Armentano D and Pardo E 2016 Solvent-Dependent Self-Assembly of an Oxalato-Based Three-Dimensional Magnet Exhibiting a Novel Architecture Inorg. Chem. 55 6845Google Scholar
  22. 22.
    Bain G A and Berry J F 2008 Diamagnetic Corrections and Pascal’s Constants J. Chem. Educ. 85 532CrossRefGoogle Scholar
  23. 23.
    Duisenberg A J M 1992 Indexing in Single-Crystal Diffractometry with an Obstinate List of Reflections J. Appl. Crystallogr. 25 92CrossRefGoogle Scholar
  24. 24.
    Sheldrick G M 2007 A short history of SHELX Acta Crystallogr., Sect. A 64 112CrossRefGoogle Scholar
  25. 25.
    Farrugia L J 2012 computer programs WinGX and ORTEP for Windows: an update J. Appl. Crystallogr. 45 849CrossRefGoogle Scholar
  26. 26.
    Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Crystallogr., Sect. C 71 3CrossRefGoogle Scholar
  27. 27.
    Brandenburg K 2006 Visual crystal structure information system, Version 3.0 (University of Bonn: Germany)Google Scholar
  28. 28.
    Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and Van De Streek J 2006 Mercury: visualization and analysis of crystal structures J. Appl. Crystallogr. 39 453CrossRefGoogle Scholar
  29. 29.
    Brown I D and Altermatt D 1985 Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database Acta Crystallogr., Sect. B 41 244CrossRefGoogle Scholar
  30. 30.
    Lethbridge Z A D, Congreve A F, Esslemont E, Slawin A M Z and Lightfoot P 2003 Synthesis and structure of three manganese oxalates: \(\text{ MnC }_{2}\text{ O }_{4}\). \(\text{2H }_{2}\text{ O }\), \([\text{ C }_{4}\text{ H }_{8}(\text{ NH }_{2})_{2}][\text{ Mn }_{2}(\text{ C }_{2}\text{ O }_{4})_{3}]\) and \(\text{ Mn }_{2}(\text{ C }_{2}\text{ O }_{4})(\text{ OH })_{2}\) J. Solid State Chem. 172 212CrossRefGoogle Scholar
  31. 31.
    Pellaux R, Schmalle H W, Decurtins S, Fischer P, Fauth F, Ouladdiaf B and Hauss T 1997 Molecular-Based Magnetism in Bimetallic Two-Dimensional Oxalate-Bridged Networks. An X-ray and Neutron Diffraction Study Phys. B: Condens. Matter 234–236 783Google Scholar
  32. 32.
    García-Couceiro U, Castillo O, Cepeda J, Lanchas M, Luque A, Pérez-Yáñez S, Román P and Vallejo-Sánchez D 2010 Influence of the Synthetic Conditions on the Structural Diversity of Extended Manganese-Oxalato-1,2-bis(4-pyridyl)ethylene Systems Inorg. Chem. 49 11346Google Scholar
  33. 33.
    Mancilla N, Caliva V, D’Antonio M C, González-Baró A C and Baran E J 2009 Vibrational spectroscopic investigation of the hydrates of manganese(II) oxalate J. Raman Spectrosc. 40 915CrossRefGoogle Scholar
  34. 34.
    Sehimi H, Chérif I and Zid M F 2016 Crystal structure and spectroscopic analysis of a new oxalate-bridged MnII compound: catena- poly[guanidinium [[aquachloridomanganese(II)]-\({\upmu }_{2}\)-oxalato-\(\kappa ^{4}\text{ O }^{1},\text{ O }^{2}\): \(\text{ O }^{1}\)’, \(\text{ O }^{2}\)’]monohydrate] Acta Crystallogr., Sect. E 72 724Google Scholar
  35. 35.
    Werner P E, Eriksson L and Westdahl M 1985 TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries J. Appl. Crystallogr. 18 367CrossRefGoogle Scholar
  36. 36.
    Rodriguez C 1990 ‘FULLPROF’ Program, Rietveld Pattern Matching Analysis of Powder Patterns, ILL, GrenobleGoogle Scholar
  37. 37.
    Zhang B, Zhang Y and Zhu D 2012 \((\text{ BEDT-TTF })_{3}\text{ Cu }_{2}(\text{ C }_{2}\text{ O }_{4})_{3}(\text{ CH }_{3}\text{ OH })_{2}\): an organic inorganic hybrid antiferromagnetic semiconductor Chem. Commun. 48 197Google Scholar
  38. 38.
    Duan Z, Zhang Y, Zhang B and Pratt F L 2009 Two homometallic antiferromagnets based on oxalato-bridged honeycomb assemblies: \((\text{ A })_{2}[\text{ M }^{\text{ II }}_{2}(\text{ C }_{2}\text{ O }_{4})_{3}]\) (A = ammonium salt derived from diethylenetriamine; \(\text{ M }^{\text{ II }}= \text{ Fe }^{2+},\, \text{ Co }^{2+})\) Inorg. Chem. 48 2140Google Scholar
  39. 39.
    Chakraborty P, Majumder I, Banu K S, Ghosh B, Kara H, Zangrando E and Das D 2016 Mn(II) complexes of different nuclearity: synthesis, characterization and catecholase-like activity Dalton Trans. 45 742CrossRefGoogle Scholar
  40. 40.
    Bonner J C and Fisher M E 1964 Magnetism in One-Dimensional Systems-The Heisenberg Model for Infinite Spin Phys. Rev. 135 A640Google Scholar
  41. 41.
    Zheng S, Meng X, Zhou Z, Jia L, Yang Y and Shi J 2012 Synthesis, structural analysis and magnetic property of a chiral Mn(II) coordination polymer Inorg. Chem. Commun. 23 31Google Scholar
  42. 42.
    De Munno G, Ruiz R, Lloret F, Faus J, Sessoli R and Julve M 1995 Oxalate and 2,2’-Bipyrimidine as Useful Tools in Designing Layered Compounds Inorg. Chem. 34 408Google Scholar
  43. 43.
    Keene T D, Zimmermann I, Neels A, Sereda O, Hauser J, Bonin M, Hursthouse M B, Price D J and Decurtins S 2010 Heterocyclic amine directed synthesis of metal(II)-oxalates: investigating the magnetic properties of two complete series of chains with S = 5/2 to S = 1/2 Dalton Trans. 39 4937CrossRefGoogle Scholar
  44. 44.
    García-Terán J P, Castillo O, Luque A, García-Couceiro U, Beobide G and Román P 2006 Supramolecular architectures assembled by the interaction of purine nucleobases with metal-oxalato frameworks. Non-covalent stabilization of the 7H-adenine tautomer in the solid-state Dalton Trans. 902Google Scholar
  45. 45.
    Wu W Y, Song Y, Li Y Z and You X Z 2005 One-dimensional structure and long-range antiferromagnetic behaviour of manganese (II) oxalate trihydrate: \(\{[\text{ Mn }({\upmu }-\text{ ox })(\text{ H }_{2}\text{ O })_{2}]\cdot \text{ H }_{2}\text{ O }\}_{\text{ n }}\) Inorg. Chem. Commun. 8 732Google Scholar
  46. 46.
    Simizu S and Friedberg S A 1988 Quasi-one- and two-dimensional antiferromagnetism in \({\upalpha }-\text{ FeC }_{2}\text{ O }_{4}\cdot \text{2H }_{2}\text{ O }\) and \({\upalpha }-\text{ MnC }_{2}\text{ O }_{4}\cdot \text{2H }_{2}\text{ O }\) J. Appl. Phys. 63 3557CrossRefGoogle Scholar
  47. 47.
    Curély J, Lloret F and Julve M 1998 Thermodynamics of the two-dimensional Heisenberg classical honeycomb lattice Phys. Rev. B 58 11 465Google Scholar
  48. 48.
    Negodaev I, De Graaf C and Caballol R 2010 Extraction of magnetic coupling parameters in 2-dimensional magnetic honeycomb layers J. Phys. Chem. A 114 7553CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Laboratoire de matériaux, cristallochimie et thermodynamique appliquée, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Faculté des Sciences de GabèsUniversité de GabèsGabèsTunisia

Personalised recommendations