Skip to main content
Log in

Formic acid assisted hydrogenation of levulinic acid to \(\upgamma \)-valerolactone over ordered mesoporous \(\hbox {Cu/Fe}_{2}\hbox {O}_{3}\) catalyst prepared by hard template method

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

 Vapor phase hydrogenation of levulinic acid using formic acid as a hydrogen source has been conducted over ordered mesoporous \(\hbox {Cu/Fe}_{2}\hbox {O}_{3}\) catalysts prepared by hard template method using mesoporous silica, SBA-15. X-ray diffraction result reveals the absence of copper peaks because of either highly dispersed state, or formation of a solid solution with iron oxides. The \(\hbox {N}_{2}\) sorption analysis and TEM results indicate the retainment of mesoporous nature in the samples. Among the catalysts tested, 10 (wt%) \(\hbox {Cu/Fe}_{2}\hbox {O}_{3}\) seems to be an efficient catalyst to yield higher amounts of \(\upgamma \)-valerolactone under hydrogen-free conditions. The results reveal the formation of spinel species, which gets reduced easily at a lower temperature (as evidenced from TPR studies), and as a consequence of this synergism, significant improvement in the catalytic performance for the synthesis of \(\upgamma \)-valerolactone from levulinic acid and formic acid in presence of water has been achieved. The presence of water plays a crucial role in obtaining a higher yield of \(\upgamma \)-valerolactone. This makes the catalytic system a viable methodology for hydrogenation of levulinic acid to get \(\upgamma \)-valerolactone.

Graphical Abstract 

SYNOPSIS: Cu (10wt%) deposited on mesoporous \(\hbox {Fe}_{2}\hbox {O}_{3}\) prepared by hard template method exhibits good activity in the hydrogenation hydrogenation of levulunic acid with formic acid as \(\hbox {H}_{2}\) source in vapour phase conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nishita L, Narasimha Rao K, Atul S N, Ganesh K and Satyanarayana CH 2014 Novel catalysts for valorization of biomass to value-added chemicals and fuels J. Chem. Sci. 126 403

    Article  Google Scholar 

  2. https://www.bp.com/.../bp.../statistical_review_of_world_energy_full_report_2011.pdf Statistical BP Review of World Energy (2011). Accessed on 10\(^{\rm th}\) June 2011

  3. Ezhova N N and Sudareva S V 2009 Modern Methods for Removing Carbon Dioxide from Flue Gases Emitted by Thermal Power Stations Therm. Eng.  56 15

    Article  Google Scholar 

  4. Reddy B S 1994 Biomass energy for India: an overview Energ. Convers. Manage  35 341

    Article  CAS  Google Scholar 

  5. Hayes D J, Fitzpatrick S, Hayes M H B Ross J R H 2006 in Biorefineries–Industrial Processes and Products B Kamm, P R Gruber and M Kamm (Eds.) (Weinheim: Wiley-VCH) p. 139

  6. Lange J P, Price R, Ayoub P M, Louis J, Petrus L, Clarke L and Gosselink H 2010 Valeric biofuels: a platform of cellulosic transportation fuels Angew. Chem. Int. Edit.  49 4479

    Article  CAS  Google Scholar 

  7. Mohan V, Raghavendra C, Pramod C V, Raju B D and Rao K S R 2014 Ni/H-ZSM-5 as a promising catalyst for vapour phase hydrogenation of levulinic acid at atmospheric pressure RSC Adv.  4 9660

    Article  CAS  Google Scholar 

  8. Mohan V, Raju BD and Rao K S R 2015 Vapour Phase Hydrogenation of Levulinic Acid Over Carbon Coated HZSM-5 Supported Ni Catalysts J. Catal. Catal.  2 33

    CAS  Google Scholar 

  9. Mohan V, Raju B D and Rao K S R 2014 Proceedings of International Conference on New Dimensions in Chemistry & Chemical Technologies-Applications in Pharma Industry (NDCT-2014), Spectrum Publishers Spectrum Publishers 94 ISBN 978-93-82829-90-4

  10. Mohan V 2014 Synthesis, characterization and catalytic applications over supported Ni catalysts PhD Thesis (Hyderabad, India: Osmania University)

  11. Mohan V, Venkateshwarlu V, Pramod C V, Raju B D and Rao K S R 2014 Vapour phase hydrocyclisation of levulinic acid to \(\upgamma \)-valerolactone over supported Ni catalysts Catal. Sci. Technol.  4 1253

    Article  CAS  Google Scholar 

  12. Mohan V, Velpula V, Ganji S, Burri D R and Kamaraju S R R 2015 Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid RSC Adv.  5 57201

    Article  Google Scholar 

  13. Varkolu M, Burri D R, Kamaraju S R R, Jonnalagadda S B and van Zyl W E 2017 Hydrogenation of Levulinic Acid Using Formic Acid as a Hydrogen Source over \(\text{ Ni/SiO }_{2}\) Catalysts Chem. Eng. Tech.  40 719

    Article  CAS  Google Scholar 

  14. Varkolu M, Velpula V, Burri D R and Kamaraju S R R 2016 Gas phase hydrogenation of levulinic acid to \(\upgamma \)-valerolactone over supported Ni catalysts with formic acid as hydrogen source J. Chem. 40 3261

    Article  CAS  Google Scholar 

  15. Hengne A M, Malawadkar A V, Biradar N S and Rode C V 2014 Surface synergism of an Ag–\(\text{ Ni/ZrO }_{2}\) nanocomposite for the catalytic transfer hydrogenation of bio-derived platform molecules RSC Adv.  4 9730

    Article  CAS  Google Scholar 

  16. Haan R J, Lange J P, Petrus L and Petrus-Hoogenbosch C J M 2007 Hydrogenation process for the conversion of a carboxylic acid or an ester having a carbonyl group US patent 20070208183A1

  17. Deng L, Li J, Lai D M, Fu Y and Guo Q X 2009 Catalytic Conversion of Biomass-Derived Carbohydrates into \(\upgamma \)-Valerolactone without Using an External \(\text{ H }_{2}\,\) Chem. Int. Ed.  48 6529

    Article  CAS  Google Scholar 

  18. Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y and Fan K N 2011 Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into \(\upgamma \)-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts Angew. Chem. Int. Edit.  50 815

    Google Scholar 

  19. Upare P P, Jeong M G, Hwang Y K, Kim D H, Kim Y D, Hwang D W, Lee U H and Chang J S 2015 Nickel-promoted copper–silica nanocomposite catalysts for hydrogenation of levulinic acid to lactones using formic acid as a hydrogen feeder Appl. Catal. A Gen.  491 127

    Article  CAS  Google Scholar 

  20. Iglesia E and Boudart M 1983 Decomposition of formic acid on copper, nickel, and copper-nickel alloys: I. Preparation and characterization of catalysts J. Catal.  84 204

    Article  Google Scholar 

  21. Iglesia E and Boudart M 1983 Decomposition of formic acid on copper, nickel, and copper-nickel alloys: II. Catalytic and temperature-programmed decomposition of formic acid on \({\rm CuSiO}_{2}, {\rm CuAl}_{2}{\rm O}_{3}\), and Cu powder J. Catal.  84 214

    Article  Google Scholar 

  22. Iglesia E and Boudart M 1983 Decomposition of formic acid on copper, nickel, and copper-nickel alloys: III. Catalytic decomposition on nickel and copper-nickel alloys J. Catal.  84 224

    Article  Google Scholar 

  23. Pradhan G K, Martha S, and Parida K M 2012 Synthesis of Multifunctional Nanostructured Zinc–Iron Mixed Oxide Photocatalyst by a Simple Solution-Combustion Technique Appl. Mater. Interfaces  4 707

    Article  CAS  Google Scholar 

  24. Pradhan G K, Reddy K H and Parida K M 2014 Facile fabrication of mesoporous \(\upalpha \)-Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green Catal. Today  224 171

    Article  CAS  Google Scholar 

  25. Sridevi B, Nagaiah P, Padmasri A H, Davidn Raju B and Rama Rao K S 2017 Studies on dehydrogenation of cyclohexanol/cyclohexanone over mesoporous supported copper catalyst J. Chem. Sci.  129 601

    Article  CAS  Google Scholar 

  26. Mohan V, Pramod C V, Suresh M, Hari Prasad Reddy K, David Raju B and Rama Rao 2012 Advantage of Ni/SBA-15 catalyst over Ni/MgO catalyst in terms of catalyst stability due to release of water during nitrobenzene hydrogenation to aniline Catal. Catal. Commun.  18 89

    Article  CAS  Google Scholar 

  27. Pramod C V, Upendar K, Mohan V, Srinivasa Sarma D, MuraliDhar G, Sai Prasad P S, David Raju B and Rama Rao K S 2015 Hydrotalcite-SBA-15 composite material for efficient carbon dioxide capture J.  \(\text{ CO }_{2}\) Utilization  12 109

  28. Siva Sankar E, Mohan V, Suresh M, Saidulu G, David Raju B and Rama Rao K S 2016 Vapor phase esterification of levulinic acid over \(\text{ ZrO }_{2}\)/SBA-15 catalyst Cat. Cat. Comm.  75 1

    Article  CAS  Google Scholar 

  29. Yen H, Seo Y, Guillet-Nicolas R, Kaliaguine S and Kleitz F 2011 One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed etal oxides (\(\text{ NiFe }_{2}\text{ O }_{4}, \text{ CuFe }_{2}\text{ O }_{4}\) and \(\text{ Cu/CeO }_{2})\) Chem. Commun.  47 10473

    Article  CAS  Google Scholar 

  30. Jiao F, Yen H, Hutchings G S, Yonemoto B, Lu Q and Kleitz F 2014 Synthesis, structural characterization, and electrochemical performance of nanocast mesoporous Cu-/Fe-based oxides J. Mater. Chem. A  2 3065

    Article  CAS  Google Scholar 

  31. Amini E, Rezaei M and Sadeghinia M 2013 Low temperature CO oxidation over mesoporous \(\text{ CuFe }_{2}\text{ O }_{4~}\)nanopowders synthesized by a novel sol-gel method Chin J. Catal.  34 1762

    Article  CAS  Google Scholar 

  32. Yang Q J, Choi H, Al-Abed S R and Dionysiou D D 2009 Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications Appl. Catal. B  88 462

    Article  CAS  Google Scholar 

  33. Kameoka S, Tanabe T and Tsai A P 2005 Spinal \(\text{ CuFe }_{2}\text{ O }_{4}\): a precursor for copper catalyst with high thermal stability and activity Catal. Lett.  100 89

    Article  CAS  Google Scholar 

  34. Halawy S A, Al-Shihry S S and Mohamed M A 1997 Gas-phase decomposition of formic acid over \(\text{ Fe }_{2}\text{ O }_{3}\) catalysts Catal. Lett.  48 247

    Article  CAS  Google Scholar 

  35. Yan K, Liao J, Wu X and Xie X 2013 A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid RSC Adv.  3 3853

    Article  CAS  Google Scholar 

  36. Yepez A, De S, Climent M S, Romero A A and Luque R 2015 Microwave-Assisted Conversion of Levulinic Acid to \(\upgamma \)-Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates Appl. Sci.  5 532

    Article  Google Scholar 

  37. Park J Y, Kim M A, Lee S J, Jung J, Jang H M, Upare P P, Hwang Y K, Chang J S and Park J K 2015 Preparation and characterization of carbon-encapsulated iron nanoparticles and their catalytic activity in the hydrogenation of levulinic acid J. Mater. Sci.  50 334

    Article  CAS  Google Scholar 

  38. Yan K and Chen A 2014 hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst Fuel  115 101

    Article  CAS  Google Scholar 

  39. Metzkera G and Burtoloso A C B 2015 Conversion of levulinic acid into \(\upgamma \)-valerolactone using \(\text{ Fe }_{3}\text{(CO) }_{12}\): mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis Chem. Commun.  51 14199

    Article  Google Scholar 

  40. Michel C, and Gallezot P 2015 Why Is Ruthenium an Efficient Catalyst for the Aqueous-Phase Hydrogenation of Biosourced Carbonyl Compounds ACS Catal.  5 4130

    Article  CAS  Google Scholar 

  41. Tan J, Cui J, Deng T, Cui X, Ding G, Zhu Y and Li Y 2015 Water-Promoted Hydrogenation of Levulinic Acid to \(\upgamma \)-Valerolactone on Supported Ruthenium Catalyst ChemCatChem. 7 508

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors ARM, MK and VRM thank UGC, New Delhi, India for the award of a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaraju Seetha Rama Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokraju, M., Mohan, V., Murali, K. et al. Formic acid assisted hydrogenation of levulinic acid to \(\upgamma \)-valerolactone over ordered mesoporous \(\hbox {Cu/Fe}_{2}\hbox {O}_{3}\) catalyst prepared by hard template method. J Chem Sci 130, 16 (2018). https://doi.org/10.1007/s12039-018-1418-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1418-3

Keywords

Navigation