Skip to main content
Log in

Continuous group and electron-count rules in aromaticity

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In the present article a group theoretical approach has been used to explain different electron-count rules for aromaticity. A general group theoretical method is presented to derive and unite the different electron count rules (Hückel, Baird, Möbius, and Spherical aromaticity). It is shown that continuous groups play important role in understanding of these electron count rules.

Graphical Abstract

SYNOPSIS Group theory has been used to investigate the origin of electron-count rules. Present work sucessfully classified the different types of aromaticity in terms of irrudicible representations of continuous groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofmann A W 1856 On insolinic acid Proc. R. Soc. Lond. 8 1

    Article  Google Scholar 

  2. Kekulé A 1865 Sur la constitution des substances aromatiques Bull. Soc. Chim. Fr. (Paris) 3 98

    Google Scholar 

  3. Clayden J, Greeves N, Warren S and Wothers P 2001 Organic Chemistry (New York: Oxford University Press)

    Google Scholar 

  4. Schleyer P von R 2011 Introduction: Aromaticity Chem. Rev. 101 1115

  5. Garrat P J 1986 Aromaticity (New York: Wiley)

    Google Scholar 

  6. Boldyrev A I and Wang L S 2005 All-metal aromaticity and antiaromaticity Chem. Rev. 105 3716

    Article  CAS  Google Scholar 

  7. King R B 2001 Three-dimensional aromaticity in polyhedral boranes and related molecules Chem. Rev. 101 1119

    Article  CAS  Google Scholar 

  8. Chen Z and King R B 2005 Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures Chem. Rev. 105 3613

    Article  CAS  Google Scholar 

  9. Bühl M and Hirsch A 2001 Spherical aromaticity of fullerenes Chem. Rev. 101 1153

    Article  Google Scholar 

  10. Garcia-Borràs M, Osuna S, Luis J M, Swart M and Solà M 2014 The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo) fullerenes Chem. Soc. Rev. 43 5089

    Article  Google Scholar 

  11. Ottosson H 2012 Organic photochemistry: Exciting excited-state aromaticity Nat. Chem. 4 969

    Article  CAS  Google Scholar 

  12. Datta A and Pati S K 2006 Stability of cyclic \(({H_2O})_n\) clusters within molecular solids: Role of aromaticity Int. J. Quantum Chem. 106 1697

    Article  CAS  Google Scholar 

  13. Zubarev D Y, Averkiev B B, Zhai H J, Wang L S and Boldyrev A I 2008 Aromaticity and antiaromaticity in transition-metal systems Phys. Chem. Chem. Phys. 10 257

    Article  CAS  Google Scholar 

  14. Yu X, Oganov A R, Popov I A and Boldyrev A I 2016 d-AO spherical aromaticity in \(\text{Ce}_6\text{ O }_8\) J. Comput. Chem. 37 103

  15. Heilbronner E 1964 Hückel molecular orbitals of Möbius-type conformations of annulenes Tetrahedron Lett. 5 1923

    Article  Google Scholar 

  16. Zimmerman H E 1966 On molecular orbital correlation diagrams, the occurrence of Möbius systems in cyclization reactions, and factors controlling ground-and excited-state reactions J. Am. Chem. Soc. 88 1564

    Article  CAS  Google Scholar 

  17. Zimmerman H E 1971 Möbius-Hückel concept in organic chemistry. Application of organic molecules and reactions Acc. Chem. Res. 4 272

    Article  CAS  Google Scholar 

  18. Rzepa H S 2005 Möbius aromaticity and delocalization Chem. Rev. 105 3697

    Article  CAS  Google Scholar 

  19. Yoon Z S, Osuka A and Kim D 2009 Möbius aromaticity and antiaromaticity in expanded porphyrins Nat. Chem. 1 113

    Article  CAS  Google Scholar 

  20. Cyranski M K, Krygowski T M, Katritzky A R and Schleyer P v R 2002 To what extent can aromaticity be defined uniquely? J. Org. Chem. 67 1333

    Article  CAS  Google Scholar 

  21. Katritzky A R, Karelson M, Sild S, Krygowski T M and Jug K 1998 Aromaticity as a quantitative concept. 7. Aromaticity reaffirmed as a multidimensional characteristic J. Org. Chem. 63 5228

    Article  CAS  Google Scholar 

  22. Krygowski T M, Szatylowicz H, Stasyuk O A, Dominikowska J and Palusiak M 2014 Aromaticity from the viewpoint of molecular geometry: Application to planar systems Chem. Rev. 114 6383

    Article  CAS  Google Scholar 

  23. Noorizadeh S and Shakerzadeh E. 2010 Shannon entropy as a new measure of aromaticity, Shannon aromaticity , Shannon aromaticity Phys. Chem. Chem. Phys. 12 4742

    Article  CAS  Google Scholar 

  24. Chen Z, Wannere C S, Corminboeuf C, Puchta R and Schleyer P v R 2005 Nucleus-independent chemical shifts (NICS) as an aromaticity criterion Chem. Rev. 105 3842

    Article  CAS  Google Scholar 

  25. Matito E, Duran M and Sola M 2005 The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization J. Chem. Phys. 122 014109

    Article  Google Scholar 

  26. Katritzky A R, Jug K and Oniciu D C 2001 Quantitative measures of aromaticity for mono-, bi-, and tricyclic penta-and hexaatomic heteroaromatic ring systems and their interrelationships Chem. Rev. 101 1421

    Article  CAS  Google Scholar 

  27. Feixas F, Matito E, Poater J and Solà M 2016 In Applications of Topological Methods in Molecular Chemistry R Chauvin, C Lepetit, B Silvi and E Alikhani (Eds.) (Switzerland: Springer International Publishing) p. 321

  28. Hirsch A, Chen Z and Jiao H 2000 Spherical aromaticity in Ih symmetrical fullerenes: The \(2(N+ 1){^2}\) rule Angew. Chem. Int. Edit. 39 3915

    Article  CAS  Google Scholar 

  29. Baird N C 1972 Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3. pi.. pi.* state of cyclic hydrocarbons J. Am. Chem. Soc. 94 4941

    Article  CAS  Google Scholar 

  30. Poater J and Solà M 2011 Open-shell spherical aromaticity: The \(2N^2+ 2N+ 1\) (with \(S= N+ {1/2}\)) rule Chem. Commun. 47 11647

    Article  CAS  Google Scholar 

  31. Dewar M J S 1966 A molecular orbital theory of organic chemistry VIII: Aromaticity and electrocyclic reactions Tetrahedron Suppl 22 (Suppl. 8) 75

    Article  Google Scholar 

  32. Miliordos E 2010 Hückel versus Möbius aromaticity: The particle in a cylinder versus a Möbius strip Phys. Rev. A 82 062118

    Article  Google Scholar 

  33. Miliordos E 2011 Particle in a Möbius wire and half-integer orbital angular momentum Phys. Rev. A 83 062107

    Article  Google Scholar 

  34. McKee W C, Wu I.Judy, Rzepa H S. and Schleyer P v R 2013 A Hückel theory perspective on Möbius aromaticity Organ. Lett. 15 3432

    Article  CAS  Google Scholar 

  35. Rubin M A and Ordónez C R 1984 Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics J. Math. Phys. 25 2888

    Article  Google Scholar 

  36. Poater J, Solà M, Viñas C and Teixidor F 2014 \(\pi \) Aromaticity and Three-Dimensional Aromaticity: Two sides of the Same Coin? Angew. Chem. Int. Edit. 53 12191

    Article  CAS  Google Scholar 

  37. Wade K 1971 The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds J. Chem. Soc. D 792

  38. Mingos D M P 1972 A general theory for cluster and ring compounds of the main group and transition elements Nat. Phys. Sci. 236 99

    Article  CAS  Google Scholar 

  39. Fowler P W and Rzepa H S 2006 Aromaticity rules for cycles with arbitrary numbers of half-twists Phys. Chem. Chem. Phys. 8 1775

    Article  CAS  Google Scholar 

  40. Goldstein M and Hoffmann R 1971 Symmetry, topology, and aromaticity J. Am. Chem. Soc. 93 6193

    Article  CAS  Google Scholar 

  41. Shainyan B A 2011 Electron-counting rules, three-dimensional aromaticity, and the boundaries of the Periodic Table J. Phys. Org. Chem. 24 619

    Article  CAS  Google Scholar 

  42. Pham H T, Duong L V and Nguyen M T 2014 Electronic structure and chemical bonding in the double ring tubular boron clusters J. Phys. Chem. C 118 24181

    Article  CAS  Google Scholar 

  43. Van Duong L, Pham H T, Tam N M and Nguyen M T 2014 A particle on a hollow cylinder: the triple ring tubular cluster B\({_{27}}^+\) Phys. Chem. Chem. Phys. 16 19470

    Article  CAS  Google Scholar 

  44. Tai T B, Ceulemans A and Nguyen M T 2012 Disk aromaticity of the planar and fluxional anionic boron clusters \(B{{_{20}}{^{-/2-}}}\) Chem. Eur. J. 18 4510

    Article  CAS  Google Scholar 

  45. Tai T B, Havenith R W, Teunissen J L, Dok A R, Hallaert S D, Nguyen M T and Ceulemans A 2013 Particle on a boron disk: Ring currents and disk aromaticity in B\({_{20}}^{2-}\) Inorg. Chem. 52 10595

    Article  CAS  Google Scholar 

  46. Tai T B, Van Duong L, Pham H T, Mai D T T and Nguyen M T 2014 A disk-aromatic bowl cluster B Tai T B, Van Duong L, Pham H T, Mai D T T and Nguyen M T 2014 A disk-aromatic bowl cluster B\(_30\): toward formation of boron buckyballs Chem. Commun. 50 1558

    Article  CAS  Google Scholar 

  47. Alexandrova A N, Boldyrev A I, Zhai H J and Wang L-S 2006 All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry Coord. Chem. Rev. 250 2811

    Article  CAS  Google Scholar 

  48. Herges R 2006 Topology in chemistry: Designing Möbius molecules Chem. Rev. 106 4820

    Article  CAS  Google Scholar 

  49. Tanaka Y, Saito S, Mori S, Aratani N, Shinokubo H, Shibata N, Higuchi Y, Yoon Z S, Kim K S and Noh S B 2008 Metalation of expanded porphyrins: A chemical trigger used to produce molecular twisting and Möbius aromaticity Angew. Chem. 120 693

    Article  Google Scholar 

  50. Herzberg G 1966 Electronic Spectra of Polyatomic Molecules (New York: Van Nostrand)

    Google Scholar 

  51. Shainyan B. 2006 Rules for counting electrons and three-dimensional aromaticity Russ. J. Organ. Chem. 42 304

    Article  CAS  Google Scholar 

  52. El Bakouri O, Duran M, Poater J, Feixas F and Solà M 2016 Octahedral aromaticity in \(^{2S+ 1}A_{1g}X{{_6}{^q}}\) clusters (X= Li–C and Be–Si, S= 0–3, and q= -2 to +4) Phys. Chem. Chem. Phys. 18 11700

    Article  Google Scholar 

Download references

Acknowledgements

Author acknowledges the financial support from SERB-DST, Govt. of India through the Project No. ECR/2016/000279.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P. Continuous group and electron-count rules in aromaticity. J Chem Sci 130, 17 (2018). https://doi.org/10.1007/s12039-017-1417-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1417-9

Keywords

Navigation