Skip to main content

Advertisement

Log in

Preparation and evaluation of mesoporous nickel and manganese bimetallic nanocatalysts in methane dry reforming process for syngas production

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this paper, Ni-Mn catalysts supported on mesoporous nanocrystalline \(\upgamma \hbox {-Al}_{2}\hbox {O}_{3}\) were prepared and employed in carbon dioxide reforming of methane for the production of synthesis gas. The physicochemical properties of the catalysts were determined by XRD, BET, TPO and SEM techniques. The obtained results revealed that the Mn-promoted catalysts exhibited higher activity and stability and lower degree of carbon formation compared to unpromoted nickel catalyst. The catalytic results showed that the 10 (wt%) Ni-3 (wt%) \(\hbox {Mn/Al}_{2}\hbox {O}_{3}\) catalyst possessed the highest catalytic activity. The XRD results confirmed that the addition of Mn improves the dispersion of the active metal species on the catalyst or incorporates into the support due to a decrease in the crystallite size of Ni and consequently causes an increase in Ni dispersion. The 10 (wt%) Ni-3 (wt%)\( \hbox { Mn/Al}_{2}\hbox {O}_{3}\) catalyst was stable during 20 hour on stream without any decrease in methane conversion.

GRAPHICAL ABSTRACT

SYNOPSIS Promotional role of Mn in bimetallic Ni-Mn catalyst supported on mesoporous nanocrystalline \(\upgamma \hbox {-}\hbox {Al}_{2}\hbox {O}_{3}\) leads to strong interaction between the support and the active metal, which causes high activity and stability with no severe coke deposition compared to the monometallic sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Özkara-Aydınoğlu Ş and Aksoylu A E 2010 Carbon dioxide reforming of methane over \(\text{ Co-X/ZrO }_{2}\) catalysts (X= La, Ce, Mn, Mg, K)  Catal. Commun. 11 1165

    Article  Google Scholar 

  2. Koubaissy B, Pietraszek A, Roger A and Kiennemann A 2010 \(\text{ CO }_{2}\) reforming of methane over Ce-Zr-Ni-Me mixed catalysts Catal. Today  157 436

    Article  CAS  Google Scholar 

  3. Asencios Y J and Assaf E M 2013 Combination of dry reforming and partial oxidation of methane on NiO–MgO–\(\text{ ZrO }_{2}\) catalyst: effect of nickel content Fuel Process. Technol.  106 247

    Article  CAS  Google Scholar 

  4. Khalesi A, Arandiyan H R and Parvari M 2008 Effects of lanthanum substitution by strontium and calcium in La-Ni-Al perovskite oxides in dry reforming of methane  Chin. J. Catal.  29 960

    Article  CAS  Google Scholar 

  5. Hou Z, Chen P, Fang H, Zheng X and Yashima T 2006 Production of synthesis gas via methane reforming with \(\text{ CO }_{2}\) on noble metals and small amount of noble (Rh) promoted Ni catalysts  Int. J. Hydrogen Energy  31 555

    Article  CAS  Google Scholar 

  6. Shi C and Zhang P 2012 Effect of a second metal (Y, K, Ca, Mn or Cu) addition on the carbon dioxide reforming of methane over nanostructured palladium catalysts  Appl. Catal. B  115 190

    Article  Google Scholar 

  7. Alipour Z, Rezaei M and Meshkani F 2014 Effect of Ni loadings on the activity and coke formation of MgO-modified \(\text{ Ni/Al }_{2}\text{ O }_{3}\) nanocatalyst in dry reforming of methane J. Energy Chem. 23 633

    Article  Google Scholar 

  8. Arandiyan H, Li J, Ma L, Hashemnejad S, Mirzaei M, Chen J, Chang H, Liu C, Wang C and Chen L 2012 Methane reforming to syngas over \(\text{ LaNi }_{{\rm x}}\text{ Fe }_{1- {{\rm x}} }\text{ O }_{3}\, (0\le \text{ x }\le 1)\) mixed-oxide perovskites in the presence of \(\text{ CO }_{2}\) and \(\text{ O }_{2}\) J. Ind. Eng. Chem. 18 2103

  9. Alipour Z, Rezaei M and Meshkani F 2014 Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline \(\text{ Al }_{2}\text{ O }_{3}\) in dry reforming of methane J. Ind. Eng. Chem. 20 633

    Article  Google Scholar 

  10. Yao L, Zhu J, Peng X, Tong D and Hu C 2013 Comparative study on the promotion effect of Mn and Zr on the stability of \(\text{ Ni/SiO }_{2}\) catalyst for \(\text{ CO }_{2}\) reforming of methane Int. J. Hydrogen Energy 38 7268

    Article  CAS  Google Scholar 

  11. Huang T, Huang W, Huang J and Ji P 2011 Methane reforming reaction with carbon dioxide over SBA-15 supported Ni–Mo bimetallic catalysts Fuel Process. Technol. 92 1868

    Article  CAS  Google Scholar 

  12. Quincoces C E, de Vargas S P, Grange P and González M G 2002 Role of Mo in \(\text{ CO }_{2}\) reforming of \(\text{ CH }_{4}\) over Mo promoted \(\text{ Ni/Al }_{2}\text{ O }_{3}\) catalysts Mater. Lett.  56 698

    Article  CAS  Google Scholar 

  13. Kathiraser Y, Oemar U, Saw E T, Li Z and Kawi S 2015 Kinetic and mechanistic aspects for \(\text{ CO }_{2}\) reforming of methane over Ni based catalysts  Chem. Eng. J. 278 62

    Article  CAS  Google Scholar 

  14. Meshkani F and Rezaei M 2010 Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane Int. J. Hydrogen Energy  35 10295

    Article  CAS  Google Scholar 

  15. Rezaei M, Alavi S M, Sahebdelfar S and Yan Z-F 2006 Nanocrystalline zirconia as support for nickel catalyst in methane reforming with \(\text{ CO }_{2}\) Energy Fuel  20 923

    Article  CAS  Google Scholar 

  16. Meshkani F and Rezaei M 2015 Preparation of mesoporous nanocrystalline iron based catalysts for high temperature water gas shift reaction: effect of preparation factors  Chem. Eng. J. 260 107

    Article  CAS  Google Scholar 

  17. Zhang J, Wang H and Dalai A K 2007 Development of stable bimetallic catalysts for carbon dioxide reforming of methane  J. Catal.  249 300

    Article  CAS  Google Scholar 

  18. Long H, Xu Y, Zhang X, Hu S, Shang S, Yin Y and Dai X 2013 Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane  J. Energy Chem.  22 733

    Article  CAS  Google Scholar 

  19. de Abreu A J, Lucrédio A F and Assaf E M 2012 Ni catalyst on mixed support of \(\text{ CeO }_{2}\)\(\text{ ZrO }_{2}\) and \(\text{ Al }_{2}\text{ O }_{3}\): effect of composition of \(\text{ CeO }_{2}\)\(\text{ ZrO }_{2}\) solid solution on the methane steam reforming reaction Fuel Process. Technol. 102 140

    Article  Google Scholar 

  20. Djaidja A, Messaoudi H, Kaddeche D and Barama A 2015 Study of Ni–M/MgO and Ni–M–Mg/Al (\(\text{ M }= \text{ Fe }\) or Cu) catalysts in the \(\text{ CH }_{4}\)\(\text{ CO }_{2}\) and \(\text{ CH }_{4}\)\(\text{ H }_{2}\text{ O }\) reforming  Int. J. Hydrogen Energy  40 4989

    Article  CAS  Google Scholar 

  21. Chen L, Zhu Q, Hao Z, Zhang T and Xie Z 2010 Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative \(\text{ CO }_{2}\) reforming in a magnetic assisted fluidized bed  Int. J. Hydrogen Energy  35 8494

    Article  CAS  Google Scholar 

  22. Chen L, Zhu Q, Hao Z, Zhang T and Xie Z 2010 Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative \(\text{ CO }_{2}\) reforming in a magnetic assisted fluidized bed Int. J. Hydrogen Energy   35 8494

    Article  CAS  Google Scholar 

  23. Choi J S, Moon K I, Kim Y G, Lee J S, Kim C H and Trimm D L 1998 Stable carbon dioxide reforming of methane over modified \(\text{ Ni/Al }_{2}\text{ O }_{3}\) catalysts Catal. Lett.  52 43

    Article  CAS  Google Scholar 

  24. Seok S H, Choi S H, Park E D, Han S H and Lee J S 2002 Mn-promoted \(\text{ Ni/Al }_{2}\text{ O }_{3}\) catalysts for stable carbon dioxide reforming of methane  J. Catal.  209 6

    Article  CAS  Google Scholar 

  25. Borowiecki T, Gac W and Denis A 2004 Effects of small \(\text{ MoO }_{3}\) additions on the properties of nickel catalysts for the steam reforming of hydrocarbons: III. Reduction of \(\text{ Ni-Mo/Al }_{2}\text{ O }_{3}\) catalysts Appl. Catal. A  270 27

    Article  CAS  Google Scholar 

  26. Son I H, Lee S J, Song I Y, Jeon W S, Jung I, Yun D J, Jeong D W, Shim J O Jang W J and Roh H S 2014 Study on coke formation over \(\text{ Ni }/\upgamma \text{-Al }_{2}\text{ O }_{3}, \text{ Co-Ni }/\upgamma \text{-Al }_{2}\text{ O }_{3}\), and \(\text{ Mg-Co-Ni }/\upgamma \text{-Al }_{2}\text{ O }_{3}\) catalysts for carbon dioxide reforming of methane  Fuel  136 194

    Article  CAS  Google Scholar 

  27. Huang L, Zhang F, Chen R and Hsu A T 2012 Manganese-promoted nickel/alumina catalysts for hydrogen production via auto-thermal reforming of ethanol Int. J. Hydrogen Energy  37 15908

    Article  CAS  Google Scholar 

  28. Meshkani F and Rezaei M 2011 Nickel catalyst supported on magnesium oxide with high surface area and plate-like shape: a highly stable and active catalyst in methane reforming with carbon dioxide Catal. Commun.  12 1046

    Article  CAS  Google Scholar 

  29. Leofanti G, Padovan M, Tozzola G and Venturelli B 1998 Surface area and pore texture of catalysts Catal. Today 41 207

    Article  CAS  Google Scholar 

  30. Ay H and Üner D 2015 Dry reforming of methane over \(\text{ CeO }_{2}\) supported Ni, Co and Ni–Co catalysts Appl. Catal. B 179 128

    Article  CAS  Google Scholar 

  31. Rahmani S, Rezaei M and Meshkani F 2014 Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline \(\upgamma \text{-Al }_{2}\text{ O }_{3}\) for \(\text{ CO }_{2}\) methanation J. Ind. Eng. Chem. 20 1346

    Article  CAS  Google Scholar 

  32. Bhavani A G, Kim W Y, Kim J Y and Lee J S 2013 Improved activity and coke resistance by promoters of nanosized trimetallic catalysts for autothermal carbon dioxide reforming of methane Appl. Catal. A 450 63

    Article  CAS  Google Scholar 

  33. Siahvashi A, Chesterfield D and Adesina A A 2013 Propane \(\text{ CO }_{2}\) (dry) reforming over bimetallic \(\text{ Mo-Ni/Al }_{2}\text{ O }_{3}\) catalyst Chem. Eng. Sci. 93 313

    Article  CAS  Google Scholar 

  34. Usman M, Daud W W and Abbas H F 2015 Dry reforming of methane: influence of process parameters—a review Renew. Sust. Energ. Rev. 45 710

    Article  CAS  Google Scholar 

  35. Al-Fatesh A 2015 Suppression of carbon formation in \(\text{ CH }_{4}\)\(\text{ CO }_{2}\) reforming by addition of Sr into bimetallic \(\text{ Ni }\)\(\text{ Co }/\upgamma \text{-Al }_{2}\text{ O }_{3}\) catalyst J. King Saud. Univ. Eng. Sci. 27 101

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the University of Kashan for supporting this work by Grant No. 682704/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Meshkani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, Y., Meshkani, F. & Rezaei, M. Preparation and evaluation of mesoporous nickel and manganese bimetallic nanocatalysts in methane dry reforming process for syngas production. J Chem Sci 130, 11 (2018). https://doi.org/10.1007/s12039-017-1410-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1410-3

Keywords

Navigation