Skip to main content

Picric acid sensing and \(\hbox {CO}_{2}\) capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer

Abstract

A sterically encumbered isopropyl group substituted fluorescent triphenylbenzene based azo-linked covalent organic polymer, \(^{i}\)PrTAPB-Azo-COP, has been synthesized by Cu(I) catalysed homo coupling (amine-amine) reaction of 1,3,5-tris(\(4'\)-amino-\(3',5'\)-isopropylphenyl)benzene (\(^{i}\)PrTAPB) under aerobic conditions. The Brunauer-Emmett-Teller (BET) and Langmuir surface areas of \(^{i}\)PrTAPB-Azo-COP have been estimated to be 395 and 697 \(\hbox {m}^{2}\) g\(^{-1}\) with a pore diameter of 11.6 Å. Due to the presence of fluorescent triphenylbenzene platform \(^{i}\)PrTAPB-Azo-COP exhibits broad emission band centred at 428 nm, when excited at 300 nm, as a result of extended conjugation. The inherent fluorescent nature of \(^{i}\)PrTAPB-Azo-COP has been utilized for sensing electron-deficient polynitroaromatic compounds (PNACs) such as a picric acid (PA), dinitrotoluene (DNT), p-dinitrobenzene (p-DNB) and m-dinitrobenzene (m-DNB). Further, \(^{i}\)PrTAPB-Azo-COP has also been utilized for capture of carbon dioxide as the azo-COP is enriched with \(\hbox {CO}_{2}\)-philic nitrogen atoms apart from its microporosity. Since the azo (–N=N-) linkages are masked by the bulky isopropyl groups, \(^{i}\)PrTAPB-Azo-COP exhibits a \(\hbox {CO}_{2}\) uptake of 6.5 and 19.4 wt% at 1 bar and 30 bar, respectively, at 273 K.

Graphical Abstract

SYNOPSIS Sterically encumbered azo-linked covalent organic polymer (\(^{i}\)PrTAPB-Azo-COP) has been synthesized from a fluorescent hexaisopropyl substituted triphenylbenzene platform. The resulting fluorescent porous COP has been utilized for picric acid sensing and \(\hbox {CO}_{2}\) capture.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    (a) Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S and Ghosh S K 2013 Highly selective detection of nitro explosives by a luminescent metal–organic framework Angew. Chem. Int. Edit. 52 2881; (b) Madhu S, Bandela A and Ravikanth M 2014 Bodipy based fluorescent chemodosimeter for explosive picric acid in aqueous media and rapid detection in the solid state RSC Adv. 4 7120; (c) Dinda D, Gupta A, Shaw B K, Sadhu S and Saha S K 2014 Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through fret mechanism ACS Appl. Mater. Interfaces 6 10722; (d) He G, Peng H, Liu T, Yang M, Zhang Y and Fang Y 2009 A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles J. Mater. Chem. 19 7347; (e) Roy B, Bar A K, Gole B and Mukherjee P S 2013 Fluorescent tris-imidazolium sensors for picric acid explosive J. Org. Chem. 78 1306; (f) Sang N, Zhan C and Cao D 2015 Highly sensitive and selective detection of 2, 4, 6-trinitrophenol using covalent-organic polymer luminescent probes J. Mater. Chem. A 3 92

  2. 2.

    (a) Ashbrook P C 2001 Elements of a role model hazardous waste management program for academic institutions Chem. Health. Saf. 8 27; (b) Wollin K-M and Dieter H 2005 Toxicological guidelines for monocyclic nitro-, amino-and aminonitroaromatics, nitramines, and nitrate esters in drinking water Arch. Environ. Contam. Toxicol. 49 18

  3. 3.

    (a) Håkansson K, Coorey R V, Zubarev R A, Talrose V L and Håkansson P 2000 Low-mass ions observed in plasma desorption mass spectrometry of high explosives J. Mass Spectrom. 35 337; (b) Joarder B, Desai A V, Samanta P, Mukherjee S and Ghosh S K 2015 Selective and sensitive aqueous-phase detection of 2, 4, 6-trinitrophenol (tnp) by an amine-functionalized metal–organic framework Chem. Eur. J. 21 965

  4. 4.

    Sohn H, Calhoun R M, Sailor M J and Trogler W C 2001 Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles Angew. Chem. Int. Edit. 40 2104

    CAS  Article  Google Scholar 

  5. 5.

    (a) Yang J-S and Swager T M 1998 Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects J. Am. Chem. Soc. 120 11864; (b) Shanmugaraju S, Jadhav H, Patil Y P and Mukherjee P S 2012 Self-assembly of an octanuclear platinum (II) tetragonal prism from a new pt\(^{II}_{4}\) organometallic star-shaped acceptor and its nitroaromatic sensing study Inorg. Chem. 51 13072

  6. 6.

    (a) Senthamizhan A, Celebioglu A and Uyar T 2015 Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber Chem. Commun. 51 5590; (b) Liu J, Yang S, Li F, Dong L, Liu J, Wang X and Pu Q 2015 Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil J. Mater. Chem. A 3 10069; (c) Lin L, Rong M, Lu S, Song X, Zhong Y, Yan J, Wang Y and Chen X 2015 A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution Nanoscale 7 1872

  7. 7.

    (a) Bell T W and Hext N M 2004 Supramolecular optical chemosensors for organic analytes Chem. Soc. Rev. 33 589; (b) Nambayah M and Quickenden T I 2004 A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals Talanta 63 461; (c) Eiceman G and Stone J 2004 Peer reviewed: Ion mobility spectrometers in national defense Anal. Chem. 76 390A; (d) Jiang Y, Zhao H, Zhu N, Lin Y, Yu P and Mao L 2008 A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles Angew. Chem. 120 8729; (e) Zhou H, Zhang Z, Jiang C, Guan G, Zhang K, Mei Q, Liu R and Wang S 2011 Trinitrotoluene explosive lights up ultrahigh raman scattering of nonresonant molecule on a top-closed silver nanotube array Anal. Chem. 83 6913; (f) Czarnik A W 1998 A sense for landmines Nature 394 417

  8. 8.

    (a) Li J-S, Tang Y-J, Li S-L, Zhang S-R, Dai Z-H, Si L and Lan Y-Q 2015 Carbon nanodots functional MOFs composites by a stepwise synthetic approach: Enhanced \(\text{H}_{2}\) storage and fluorescent sensing CrystEngComm 17 1080; (b) Xie W, Zhang S-R, Du D-Y, Qin J-S, Bao S-J, Li J, Su Z-M, He W-W, Fu Q and Lan Y-Q 2015 Stable luminescent metal–organic frameworks as dual-functional materials to encapsulate Ln\(^{3+}\) ions for white-light emission and to detect nitroaromatic explosives Inorg. Chem. 54 3290; (c) Bandela A K, Bandaru S and Rao C P 2015 A fluorescent 1, 3-diaminonaphthalimide conjugate of calix [4] arene for sensitive and selective detection of trinitrophenol: Spectroscopy, microscopy, and computational studies, and its applicability using cellulose strips Chem. Eur. J. 21 13364; (d) Venkatramaiah N, Kumar S and Patil S 2012 Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics Chem. Commun. 48 5007

  9. 9.

    (a) Chopra R, Kaur P and Singh K 2015 Pyrene-based chemosensor detects picric acid upto attogram level through aggregation enhanced excimer emission Anal. Chim. Acta 864 55; (b) Udhayakumari D, Velmathi S, Venkatesan P and Wu S-P 2015 A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid Anal. Methods 7 1161; (c) Gupta S K, Kaleeswaran D, Nandi S, Vaidhyanathan R and Murugavel R 2017 Bulky isopropyl group loaded tetraaryl pyrene based azo-linked covalent organic polymer for nitroaromatics sensing and \(\text{ CO }_{2}\) adsorption ACS Omega 2 3572

  10. 10.

    Durga Prasad K, Venkataramaiah N and Guru Row T N 2014 1, 9-pyrazoloanthrone as a colorimetric and “turn-on” fluorometric chemosensor: Structural implications Cryst. Growth Des. 14 2118

    CAS  Article  Google Scholar 

  11. 11.

    (a) Peng Y, Zhang A-J, Dong M and Wang Y-W 2011 A colorimetric and fluorescent chemosensor for the detection of an explosive—2, 4, 6-trinitrophenol (TNP) Chem. Commun. 47 4505; (b) Neena K K and Thilagar P 2016 Replacing the non-polarized C=C   bond with an isoelectronic polarized B–N unit for the design and development of smart materials J. Mater. Chem. C 4 11465

  12. 12.

    Kartha K K, Sandeep A, Praveen V K and Ajayaghosh A 2015 Detection of nitroaromatic explosives with fluorescent molecular assemblies and \(\pi -\text{ gels }\) Chem. Rec. 15 252

    CAS  Google Scholar 

  13. 13.

    (a) Shaw P E, Chen S S, Wang X, Burn P L and Meredith P 2013 High-generation dendrimers with excimer-like photoluminescence for the detection of explosives J. Phys. Chem. C 117 5328; (b) Shoaee S, Chen S S, Cavaye H, Smith A R, Burn P L, Gentle I R, Meredith P and Shaw P E 2017 Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors Sens. Actuators B-Chem. 239 727

  14. 14.

    (a) Hong G, Sun J, Qian C, Xue P, Gong P, Zhang Z and Lu R 2015 Nanofibers generated from linear carbazole-based organogelators for the detection of explosives J. Mater. Chem. C 3 2371; (b) Xu Y, Wu X, Chen Y, Hang H, Tong H and Wang L 2016 Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors RSC Adv. 6 31915; (c) Kaleeswaran D, Vishnoi P, Kumar S, Chithiravel S, Walawalkar M G, Krishnamoorthy K and Murugavel R 2016 Alkyl-chain-separated triphenybenzene-carbazole conjugates and their derived polymers: Candidates for sensory, electrical and optical materials ChemistrySelect 1 6649; (d) Mei X, Wei K, Wen G, Liu Z, Lin Z, Zhou Z, Huang L, Yang E and Ling Q 2016 Carbazole-based diphenyl maleimides: Multi-functional smart fluorescent materials for data process and sensing for pressure, explosive and ph Dyes Pigments 133 345; (e) Prakash K and Nagarajan R 2013 Synthesis of solid state fluorescent quino [2, 3-b] carbazoles via copper (II) triflate-catalyzed heteroannulation: Application to detection of TNT Tetrahedron 69 8269

  15. 15.

    Shanmugaraju S and Mukherjee P S 2015 \(\Pi \)-electron rich small molecule sensors for the recognition of nitroaromatics Chem. Commun. 51 16014

    CAS  Google Scholar 

  16. 16.

    Xu S and Lu H 2015 Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of tnt based on MIP@QD fluorescence sensors Chem. Commun. 51 3200

    CAS  Google Scholar 

  17. 17.

    (a) Zhou H, Ye Q, Neo W T, Song J, Yan H, Zong Y, Tang B Z, Hor T A and Xu J 2014 Electrospun aggregation-induced emission active poss-based porous copolymer films for detection of explosives Chem. Commun. 50 13785; (b) Ma X, Tao F, Zhang Y, Li T, Raymo F M and Cui Y 2017 Detection of nitroaromatic explosives by 3D hyperbranched \(\sigma -\pi \) conjugate polymer on the basis of the poss scaffold J. Mater. Chem. A 5 14343

  18. 18.

    (a) Chowdhury A, Howlader P and Mukherjee P S 2016 Aggregation-induced emission of platinum (II) metallacycles and their ability to detect nitroaromatics Chem. Eur. J. 22 7468; (b) Sandhu S, Kumar R, Singh P and Kumar S 2016 Impact of aggregation on fluorescence sensitivity of molecular probes towards nitroaromatic compounds J. Mater. Chem. C 4 3209; (c) Zwijnenburg M A, Berardo E, Peveler W J and Jelfs K E 2016 Amine molecular cages as supramolecular fluorescent explosive sensors: A computational perspective J. Phys. Chem. B 120 5063

  19. 19.

    (a) Hu Z, Deibert B J and Li J 2014 Luminescent metal–organic frameworks for chemical sensing and explosive detection Chem. Soc. Rev. 43 5815; (b) Nagarkar S S, Desai A V and Ghosh S K 2016 Engineering metal–organic frameworks for aqueous phase 2, 4, 6-trinitrophenol (TNP) sensing CrystEngComm 18 2994; (c) Yang Y, Shen K, Lin J-Z, Zhou Y, Liu Q-Y, Hang C, Abdelhamid H N, Zhang Z-Q and Chen H 2016 A Zn-MOF constructed from electron-rich \(\pi \)-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor RSC Adv. 6 45475; (d) Yadav A, Deshmukh M S and Boomishankar R 2017 Cationic and neutral copper (I) iodide cluster MOFs derived from tridentate N-donor functionalized P(V) ligands: Synthesis, structure and photophysical properties J. Chem. Sci. 129 1093; (e) Santra A, Francis M, Parshamoni S and Konar S 2017 Nanoporous Cu(I) metal–organic framework: Selective adsorption of benzene and luminescence sensing of nitroaromatics ChemistrySelect 2 3200; (f) Sanda S, Parshamoni S, Biswas S and Konar S 2015 Highly selective detection of palladium and picric acid by a luminescent MOF: A dual functional fluorescent sensor Chem. Commun. 51 6576; (g) Parshamoni S, Telangae J and Konar S 2015 Regulation of the pore size by shifting the coordination sites of ligands in two MOFs: Enhancement of \(\text{ CO }_{2}\) uptake and selective sensing of nitrobenzene Dalton Trans. 44 20926

  20. 20.

    (a) Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S and Banerjee R 2015 Chemical sensing in two dimensional porous covalent organic nanosheets Chem. Sci. 6 3931; (b) Kaleeswaran D, Vishnoi P and Murugavel R 2015 [3+ 3] imine and \(\beta \)-ketoenamine tethered fluorescent covalent-organic frameworks for \(\text{ CO }_{2}\) uptake and nitroaromatic sensing J. Mater. Chem. C 3 7159; (c) Dalapati S, Jin S, Gao J, Xu Y, Nagai A and Jiang D 2013 An azine-linked covalent organic framework J. Am. Chem. Soc. 135 17310

  21. 21.

    McCluskey A, Holdsworth C I and Bowyer M C 2007 Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity? Org. Bio. Chem. 5 3233

    CAS  Article  Google Scholar 

  22. 22.

    (a) Guo L and Cao D 2015 Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives J. Mater. Chem. C 3 8490; (b) Bhunia A, Esquivel D, Dey S, Fernández-Terán R, Goto Y, Inagaki S, Van Der Voort P and Janiak C 2016 A photoluminescent covalent triazine framework: \(\text{ CO }_{2}\) adsorption, light-driven hydrogen evolution and sensing of nitroaromatics J. Mater. Chem. A 4 13450; (c) Deshmukh A, Bandyopadhyay S, James A and Patra A 2016 Trace level detection of nitroanilines using a solution processable fluorescent porous organic polymer J. Mater. Chem. C 4 4427; (d) Sun X, Wang Y and Lei Y 2015 Fluorescence based explosive detection: From mechanisms to sensory materials Chem. Soc. Rev. 44 8019

  23. 23.

    (a) Thomas S W, Joly G D and Swager T M 2007 Chemical sensors based on amplifying fluorescent conjugated polymers Chem. Rev. 107 1339; (b) Yang J-S and Swager T M 1998 Porous shape persistent fluorescent polymer films: An approach to tnt sensory materials J. Am. Chem. Soc. 120 5321

  24. 24.

    (a) Gomes R, Bhanja P and Bhaumik A 2015 A triazine-based covalent organic polymer for efficient \(\text{ CO }_{2}\) adsorption Chem. Commun. 51 10050; (b) Chakraborty S, Colón Y J, Snurr R Q and Nguyen S T 2015 Hierarchically porous organic polymers: Highly enhanced gas uptake and transport through templated synthesis Chem. Sci. 6 384; (c) Nandi S, Werner-Zwanziger U and Vaidhyanathan R 2015 A triazine–resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing \(\text{ CO }_{2}\) uptake under humid conditions J. Mater. Chem. A 3 21116; (d) Nandi S, Rother J, Chakraborty D, Maity R, Werner-Zwanziger U and Vaidhyanathan R 2017 Exceptionally stable bakelite-type polymers for efficient pre-combustion\(\text{ CO }_{2}\) capture and H\(_{2}\) purification J. Mater. Chem. A 5 8431

  25. 25.

    (a) Zhang Y and Riduan S N 2012 Functional porous organic polymers for heterogeneous catalysis Chem. Soc. Rev. 41 2083; (b) Seo M, Kim S, Oh J, Kim S-J and Hillmyer M A 2015 Hierarchically porous polymers from hyper-cross-linked block polymer precursors J. Am. Chem. Soc. 137 600; (c) Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P and Bein T 2013 A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene Angew. Chem. 125 2992; (d) Bildirir H, Gregoriou V G, Avgeropoulos A, Scherf U and Chochos C L 2017 Porous organic polymers as emerging new materials for organic photovoltaic applications: Current status and future challenges Mater. Horiz. 4 546; (e) Peng P, Zhou Z, Guo J and Xiang Z 2017 Well-defined 2d covalent organic polymers for energy electrocatalysis ACS Energy Lett. 2 1308; (f) Wu D, Xu F, Sun B, Fu R, He H and Matyjaszewski K 2012 Design and preparation of porous polymers Chem. Rev. 112 3959; (g) Xu Y, Jin S, Xu H, Nagai A and Jiang D 2013 Conjugated microporous polymers: Design, synthesis and application Chem. Soc. Rev. 42 8012; (h) Mukherjee G, Thote J, Aiyappa H B, Kandambeth S, Banerjee S, Vanka K and Banerjee R 2017 A porous porphyrin organic polymer (PPOP) for visible light triggered hydrogen production Chem. Commun. 53 4461; (i) Rao K V, Haldar R, Maji T K and George S J 2016 Dynamic, conjugated microporous polymers: Visible light harvesting via guest-responsive reversible swelling Phys. Chem. Chem. Phys. 18 156; (j) Suresh V M, Bandyopadhyay A, Roy S, Pati S K and Maji T K 2015 Highly luminescent microporous organic polymer with lewis acidic boron sites on the pore surface: Ratiometric sensing and capture of F- ions Chem. Eur. J. 21 10799

  26. 26.

    (a) Haszeldine R S 2009 Carbon capture and storage: How green can black be? Science 325 1647; (b) Rochelle G T 2009 Amine scrubbing for \(\text{ CO }_{2}\) capture Science 325 1652

  27. 27.

    (a) Patel H A, Je S H, Park J, Chen D P, Jung Y, Yavuz C T and Coskun A 2013 Unprecedented high-temperature \(\text{ CO }_{2}\) selectivity in N\(_{2}\)-phobic nanoporous covalent organic polymers Nat. Commun. 4 1357; (b) Arab P, Rabbani M G, Sekizkardes A K, İslamoğlu T and El-Kaderi H M 2014 Copper (I)-catalyzed synthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture Chem. Mater. 26 1385; (c) Ashourirad B, Sekizkardes A K, Altarawneh S and El-Kaderi H M 2015 Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers Chem. Mater. 27 1349; (d) Rabbani M G and El-Kaderi H M 2012 Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake Chem. Mater. 24 1511; (e) Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R and El-Kaderi H M 2013 A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications Chem. Eur. J. 19 3324; (f) Sekizkardes A K, Altarawneh S, Kahveci Z, İslamoğlu T and El-Kaderi H M 2014 Highly selective \(\text{ CO }_{2}\) capture by triazine-based benzimidazole-linked polymers Macromolecules 47 8328; (g) Byun J, Je S-H, Patel H A, Coskun A and Yavuz C T 2014 Nanoporous covalent organic polymers incorporating Tröger’s base functionalities for enhanced CO\(_2\) capture J. Mater. Chem. A 2 12507

  28. 28.

    Islamoglu T, Kim T, Kahveci Z, El-Kadri O M and El-Kaderi H M 2016 Systematic postsynthetic modification of nanoporous organic frameworks for enhanced \(\text{ CO }_{2}\) capture from flue gas and landfill gas J. Phys. Chem. C 120 2592

    CAS  Article  Google Scholar 

  29. 29.

    (a) Nagendran S, Vishnoi P and Murugavel R 2017 Triphenylbenzene sensor for selective detection of picric acid J. Fluoresc. 27 1299; (b) Vishnoi P, Sen S, Patwari G N and Murugavel R 2015 Charge transfer aided selective sensing and capture of picric acid by triphenylbenzenes New J. Chem. 39 886; (c) Vishnoi P, Walawalkar M G and Murugavel R 2014 Containment of polynitroaromatic compounds in a hydrogen bonded triarylbenzene host Cryst. Growth Des. 14 5668; (d) Vishnoi P, Walawalkar M G, Sen S, Datta A, Patwari G N and Murugavel R 2014 Selective fluorescence sensing of polynitroaromatic explosives using triaminophenylbenzene scaffolds Phys. Chem. Chem. Phys. 16 10651

  30. 30.

    Kaleeswaran D, Antony R, Sharma A, Malani A and Murugavel R 2017 Catalysis and \(\text{ CO }_{2}\) capture by palladium incorporated covalent organic frameworks ChemPlusChem 82 1253

  31. 31.

    Armarego W L and Chai C L L 2009 Purification of laboratory chemicals (Oxford: Butterworth-Heinemann) p. 88

  32. 32.

    (a) Patel H A, Je S H, Park J, Jung Y, Coskun A and Yavuz C T 2014 Directing the structural features of N\(_{2}\)-phobic nanoporous covalent organic polymers for \(\text{ CO }_{2}\) capture and separation Chem. Eur. J. 20 772; (b) Yang Z, Zhang H, Yu B, Zhao Y, Ma Z, Ji G, Han B and Liu Z 2015 Azo-functionalized microporous organic polymers: Synthesis and applications in \(\text{ CO }_{2}\) capture and conversion Chem. Commun. 51 11576; (c) Lu J and Zhang J 2014 Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective \(\text{ CO }_{2}\) capture J. Mater. Chem. A 2 13831

  33. 33.

    Arab P, Parrish E, İslamoğlu T and El-Kaderi H M 2015 Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation J. Mater. Chem. A 3 20586

    CAS  Article  Google Scholar 

  34. 34.

    (a) Mostakim S and Biswas S 2016 A thiadiazole-functionalized Zr(IV)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid CrystEngComm 18 3104; (b) Chahal M K and Sankar M 2015 1, 8-naphthyridine-based fluorescent receptors for picric acid detection in aqueous media Anal. Methods 7 10272; (c) Mukherjee S, Desai A V, Manna B, Inamdar A I and Ghosh S K 2015 Exploitation of guest accessible aliphatic amine functionality of a metal–organic framework for selective detection of 2, 4, 6-trinitrophenol (TNP) in water Cryst. Growth Des. 15 4627; (d) Mutneja R, Singh R, Kaur V, Wagler J, Kroke E and Kansal S K 2017 Proton transfer assisted facile encapsulation of picric acid in sol-gel derived silica decorated with azo-azomethine hosts Dyes Pigments 139 635

  35. 35.

    Zhang Y, Zhu Y, Guo J, Gu S, Wang Y, Fu Y, Chen D, Lin Y, Yu G and Pan C 2016 The role of the internal molecular free volume in defining organic porous copolymer properties: Tunable porosity and highly selective \(\text{ CO }_{2}\) adsorption Phys. Chem. Chem. Phys. 18 11323

    CAS  Article  Google Scholar 

  36. 36.

    Tao L, Niu F, Zhang D, Liu J, Wang T and Wang Q 2015 Azo-bridged covalent porphyrinic polymers (Azo-CPPs): Synthesis and \(\text{ CO }_{2}\) capture properties RSC Adv. 5 96871

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by SERB, New Delhi (SB/S1/IC-48/2013) and IIT-Bombay Bridge Funding. R. M. thanks, SERB, New Delhi for J. C. Bose Fellowship (SB/S2/JCB-85/2014). D. K. thanks UGC, New Delhi, for a research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Murugavel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 483 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaleeswaran, D., Murugavel, R. Picric acid sensing and \(\hbox {CO}_{2}\) capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer. J Chem Sci 130, 1 (2018). https://doi.org/10.1007/s12039-017-1403-2

Download citation

Keywords

  • Azo linkage
  • COPs
  • \(\hbox {CO}_{2}\) capture
  • nitroaromatic sensing
  • triphenylbenzene