Nano-sized glass as an economically viable and eco-benign support to anchor heteropolyacids for green and sustainable chemoselective oxidation of sulfides to sulfoxides

Abstract

In this work, glass wastes were employed as cost-effective supports for the immobilization of phosphomolybdic acid (5–25 wt.% PMA) through an impregnation method. The highly efficient and retrievable nanocatalyst named nano-glass waste-supported phosphomolybdic acid (n-GW/PMA) was fully characterized by several techniques such as: XRD, FE-SEM, EDX, FT-IR and TGA. The catalytic performance of the as-synthesized heterogeneous nanocatalyst was effectively investigated for the chemoselective oxidation of sulfides to sulfoxides in the presence of 30% \(\hbox {H}_{2}\hbox {O}_{2}\) as an oxidant at room temperature under solvent-free condition. Optimization of the reaction conditions was performed by means of central composite design (CCD), which is one of the powerful response surface methodologies. Based on the results obtained under the optimum condition, the sample of 16 wt.% of PMA loading offered high conversion rates and yields (97%). Besides, the beneficial points of the prepared catalyst were its recoverability and reusability for several reaction cycles, low-cost and toxicity, easy availability and facile production.

Graphical abstract

Nano-glass waste-supported phosphomolybdic acid (n-GW/PMA) was synthesized as a novel, highly efficient and retrievable nanocatalyst for the chemoselective, green and rapid oxidation of sulfides to sulfoxides through an experimental design (CCD) approach. The prepared catalyst was characterized by FT-IR, TGA, XRD, FE-SEM and EDX techniques.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7

References

  1. 1.

    Dioos B M L, Vankelecom I F J and Jacobs P A 2006 Aspects of immobilisation of catalysts on polymeric supports Adv. Synth. Catal. 348 1413

    CAS  Article  Google Scholar 

  2. 2.

    Leadbeater N E and Marco M 2002 Preparation of polymer-supported ligands and metal complexes for use in catalysis Chem. Rev. 102 3217

    CAS  Article  Google Scholar 

  3. 3.

    Rase H F 2000 Handbook of commercial catalysts: Heterogeneous catalysts (Boca Raton: CRC press)

    Google Scholar 

  4. 4.

    Astruc D, Lu F and Aranzaes J R 2005 Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis Angew. Chem. Int. Ed. 44 7852

    CAS  Article  Google Scholar 

  5. 5.

    Yoon T J, Lee W, Oh Y S and Lee J K 2003 Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling New J. Chem. 27 227

    CAS  Article  Google Scholar 

  6. 6.

    Zhu Y, Lee C N, Kemp R A, Hosmane N S and Maguire J A 2008 Latest developments in the catalytic application of nanoscaled neutral group 8–10 metals Chem. Asian J. 3 650

    CAS  Article  Google Scholar 

  7. 7.

    Kozhevnikov I V 1998 Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions Chem. Rev. 98 171

    CAS  Article  Google Scholar 

  8. 8.

    Mizuno N and Misono M 1998 Heterogeneous catalysis Chem. Rev. 98 199

    CAS  Article  Google Scholar 

  9. 9.

    Misono M 2001 Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state Chem. Commun. 1141

  10. 10.

    Palermo V, Villabrille P I, Vazquez P G, Caceres C V, Tundo P and Romanelli G P 2013 Role of vanadium and pyridine in heteropolycompounds for selective oxidation of alcohols with hydrogen peroxide J. Chem. Sci. 125 1375

    CAS  Article  Google Scholar 

  11. 11.

    Damyanova S, Fierro J L G, Sobrados I and Sanz J 1999 Surface behavior of supported 12-heteropoly acid as revealed by nuclear magnetic resonance, X-ray photoelectron spectroscopy, and Fourier transform infrared techniques Langmuir 15 469

    CAS  Article  Google Scholar 

  12. 12.

    Kim H J, Chu Y H, Moon J H, Han H S and Shul Y G 2001 Preparation of heteropoly acid entraped in nano silica matrix Mol. Cryst. Liq. Cryst. 371 131

    CAS  Article  Google Scholar 

  13. 13.

    Staiti P, Freni S and Hocevar S 1999 Synthesis and characterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica J. Power Sources 79 250

    CAS  Article  Google Scholar 

  14. 14.

    Yan X M, Lei J H, Liu D, Wu Y C and Liu W 2007 Synthesis and catalytic properties of mesoporous phosphotungstic acid/SiO\(_2\) in a self-generated acidic environment by evaporation-induced self-assembly Mater. Res. Bull. 42 1905

    CAS  Article  Google Scholar 

  15. 15.

    Dubey N, Rayalu S S, Labhsetwar N K and Devotta S 2008 Visible light active zeolite-based photocatalysts for hydrogen evolution from water Int. J. Hydrogen Energy 33 5958

    CAS  Article  Google Scholar 

  16. 16.

    Abdollahi-Alibeik M, Zaghaghi Z and Mohammadpoor-Baltork I 2008 Alumina Supported 12-Tungstophosphoric Acid as an Efficient and Reusable Catalyst for Synthesis of 1, 5-Benzodiazepines J. Chin. Chem. Soc. 55 1

    CAS  Article  Google Scholar 

  17. 17.

    Dupont P, Védrine J C, Paumard E, Hecquet G and Lefebvre F 1995 Heteropolyacids supported on activated carbon as catalysts for the esterification of acrylic acid by butanol Appl. Catal., A 129 217

    CAS  Article  Google Scholar 

  18. 18.

    Engin A, Haluk H and Gurkan K 2003 Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins Green Chem. 5 460

    CAS  Article  Google Scholar 

  19. 19.

    Shayan A and Xu A 2004 Value-added utilisation of waste glass in concrete Cement Concrete Res. 34 81

    CAS  Article  Google Scholar 

  20. 20.

    Kolvari E, Zolfagharinia S, and Koukabi N 2016 A unique opportunity for the utilization of glass wastes as a resource for catalytic applications: toward a cleaner environment RSC Adv. 6 113844

    Article  Google Scholar 

  21. 21.

    Hosseini MM, Kolvari E, Koukabi N, Ziyaei M and Zolfigol M A 2016 Zirconia Sulfuric Acid: An Efficient Heterogeneous Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidinones Under Solvent-Free Conditions Catal. Lett. 146 1040

    CAS  Article  Google Scholar 

  22. 22.

    Kolvari E, Koukabi N and Armandpour O 2014 A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1\(H\))-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid Tetrahedron 70 1383

    CAS  Article  Google Scholar 

  23. 23.

    Kolvari E, Koukabi N and Hosseini M M 2015 Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction J. Mol. Catal. A: Chem. 397 68

    CAS  Article  Google Scholar 

  24. 24.

    Kolvari E, Koukabi N, Hosseini M M and Khandani Z 2015 Perlite: an inexpensive natural support for heterogenization of HBF\(_4\) RSC Adv. 5 36828

    CAS  Article  Google Scholar 

  25. 25.

    Kolvari E, Koukabi N, Hosseini M M, Vahidian M and Ghobadi E 2016 Nano-ZrO2 sulfuric acid: a heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions RSC Adv. 6 7419

    CAS  Article  Google Scholar 

  26. 26.

    Kolvari E and Zolfagharinia S 2016 A waste to wealth approach through utilization of nano-ceramic tile waste as an accessible and inexpensive solid support to produce a heterogeneous solid acid nanocatalyst: to kill three birds with one stone RSC Adv.  693963

    CAS  Article  Google Scholar 

  27. 27.

    Koukabi N, Kolvari E, Khazaei A, Zolfigol M A, Shaghasemi BS, and Khavasi H R 2011 Hantzsch reaction on free nano-\(\text{ Fe }_{2}\text{ O }_{3}\) catalyst: excellent reactivity combined with facile catalyst recovery and recyclability Chem. Commun. 47 9230

    CAS  Article  Google Scholar 

  28. 28.

    Koukabi N, Kolvari E, Zolfigol M A, Khazaei A, Shaghasemi B S, and Fasahatib B 2012 A Magnetic Particle-Supported Sulfonic Acid Catalyst: Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis Adv. Synth. Catal. 354 2001

    CAS  Article  Google Scholar 

  29. 29.

    Carreño M C 1995 Applications of sulfoxides to asymmetric synthesis of biologically active compounds Chem. Rev. 95 1717

    Article  Google Scholar 

  30. 30.

    Fernández de la Pradilla R, Colomer I and Viso A 2012 Sulfinyl-Mediated Stereoselective Overman Rearrangements and Diels–Alder Cycloadditions Org. Lett. 14 3068

    Article  Google Scholar 

  31. 31.

    An D, Guo Y, Zhu Y and Wang Z 2010 A green route to preparation of silica powders with rice husk ash and waste gas Chem. Eng. J. 162 509

    CAS  Article  Google Scholar 

  32. 32.

    Wang B, Zhang J, Zou X, Dong H and Yao P 2015 Selective oxidation of styrene to 1, 2-epoxyethylbenzene by hydrogen peroxide over heterogeneous phosphomolybdic acid supported on ionic liquid modified MCM-41 Chem. Eng. J. 260 172

    CAS  Article  Google Scholar 

  33. 33.

    Galvão A C P, Farias A C M and Mendes J U L 2015 Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation Cerâmica 61 367

    Article  Google Scholar 

  34. 34.

    Bhat A H, Khalil H P S A, Mishra R K, Datt M and Banthia A K 2011 Development and material properties of chitosan and phosphomolybdic acid-based composites J. Compos. Mater. 45 39

    CAS  Article  Google Scholar 

  35. 35.

    Titus E, Ali N, Cabral G, Gracio J, Babu P R and Jackson M J 2006 Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy J. Mater. Eng. 15 182

    CAS  Google Scholar 

  36. 36.

    Rocchiccioli-Deltcheff C, Amirouche M and Fournier M 1992 Structure and catalytic properties of silica-supported polyoxomolybdates III. 12-molybdosilicic acid catalysts: vibrational study of the dispersion effect and nature of the Mo species in interaction with the silica support J. Catal. 138 445

    Article  Google Scholar 

  37. 37.

    El-Wahab M M M A and Said A A 2005 Phosphomolybdic acid supported on silica gel and promoted with alkali metal ions as catalysts for the esterification of acetic acid by ethanol J. Mol. Catal A: Chem. 240 109

    Google Scholar 

  38. 38.

    Misono M, Mizuno N, Katamura K, Kasai A, Konishi Y, Sakata K, Okuhara T and Yoneda Y 1982 Catalysis by heteropoly compounds. III. The structure and properties of 12-heteropolyacids of molybdenum and tungsten (\(\text{ H }_{3}\text{ PMo }_{12}\)) and their salts pertinent to heterogeneous catalysis Bull. Chem. Soc. Jpn. 55 400

    CAS  Article  Google Scholar 

  39. 39.

    Kumar S, Verma S, Jain S L and Sain B 2011 Thiourea dioxide (TUD): a robust organocatalyst for oxidation of sulfides to sulfoxides with TBHP under mild reaction conditions Tetrahedron Lett. 52 3393

    CAS  Article  Google Scholar 

  40. 40.

    Habibi D, Zolfigol M A, Safaiee M, Shamsian A and Ghorbani-Choghamarani A 2009 Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr Catal. Commun. 10 1257

    CAS  Article  Google Scholar 

  41. 41.

    Hussain S, Bharadwaj S K, Pandey R and Chaudhuri M K 2009 Borax-Catalyzed and pH-Controlled Selective Oxidation of Organic Sulfides by H\(_2\)O\(_2\): An Environmentally Clean Protocol Eur. J. Org. Chem. 2009 3319

    Article  Google Scholar 

  42. 42.

    Dhakshinamoorthy A and Pitchumani K 2009 Clay-supported ceric ammonium nitrate as an effective, viable catalyst in the oxidation of olefins, chalcones and sulfides by molecular oxygen Catal. Commun. 10 872

    CAS  Article  Google Scholar 

  43. 43.

    Shi X Y and Wei J F 2008 Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide J. Mol. Catal. A: Chem. 280 142

    CAS  Article  Google Scholar 

  44. 44.

    García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, Garcia P, Murrieta-Guevara F and Jiménez-Cruz F 2008 Ultra-deep oxidative desulfurization of diesel fuel by the Mo/\(\text{ Al }_{2}\text{ O }_{3}\) system: The effect of system parameters on catalytic activity Appl. Catal., A 334 366

    Article  Google Scholar 

  45. 45.

    García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, Murrieta F, Navarrete J and Jiménez-Cruz F 2006 Ultra-deep oxidative desulfurization of diesel fuel with \(\text{ H }_{2}\text{ O }_{2}\) Appl. Catal., A 305 15

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Semnan University Research Council for the financial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eskandar Kolvari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2529 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolfagharinia, S., Kolvari, E., Koukabi, N. et al. Nano-sized glass as an economically viable and eco-benign support to anchor heteropolyacids for green and sustainable chemoselective oxidation of sulfides to sulfoxides. J Chem Sci 129, 1411–1421 (2017). https://doi.org/10.1007/s12039-017-1348-5

Download citation

Keywords

  • Nano-glass
  • phosphomolybdic acid
  • impregnation method
  • nanocatalyst
  • sulfide oxidation
  • reusability