Journal of Chemical Sciences

, Volume 129, Issue 8, pp 1247–1256 | Cite as

Phthalocyanine and azaphthalocyanines containing eugenol: synthesis, DNA interaction and comparison of lipase inhibition properties

  • Günay Kaya Kantar
  • Özlem Faiz
  • Onur Şahin
  • Selami Şaşmaz
Regular Article


Novel eugenol-substituted zinc(II) azaphthalocyanines (ZnAzaPcs) were synthesised and their lipase inhibition and DNA binding properties compared with phthalocyanines (Pcs) containing eugenol. This is the first study on lipase inhibition and DNA binding of Pcs and AzaPcs containing a pharmacophore group, such as eugenol. The novel ZnAzaPcs were characterised using a combination of FT-IR, \(^{1}\hbox {H}\) NMR, \(^{13}\hbox {C}\) NMR, UV–Vis, MS and elemental analysis. The crystal structures of two pyrazine compounds were also determined by the single crystal diffraction technique. This study showed that two phthalocyanines compounds (3a and 4a) could be potential lipase inhibitor agents due to greater hydrophobicity than other azaphtalocyanines. Compound 4a displayed lowest \(\hbox {IC}_{50}\) value. Non-intercalative binding to DNA was identified only for compound 2a.

Graphical Abstract:

SYNOPSIS Novel eugenol-substituted zinc(II) azaphthalocyanines (ZnAzaPcs) were synthesised and their lipase inhibition and DNA binding properties compared with phthalocyanines (Pcs) containing eugenol. This is the first study on lipase inhibition and DNA binding of Pcs and AzaPcs containing a pharmacophore group, such as eugenol.


Azaphthalocyanine eugenoe lipase inhibition phthalocyanine DNA interaction 

Supplementary material

12039_2017_1320_MOESM1_ESM.docx (649 kb)
Supplementary material 1 (docx 648 KB)


  1. 1.
    Kudrevich S V and vanLier J E 1996 Azaanalogs of phthalocyanine: Syntheses and properties Coordin. Chem. Rev. 156 163Google Scholar
  2. 2.
    Zimcik P, Miletin M, Musil Z, Kopecky K, Kubza L and Brault D 2006 Cationic azaphthalocyanines bearing aliphatic tertiary amino substituents—Synthesis, singlet oxygen production and spectroscopic studies J. Photochem. Photobiol. A 183 59CrossRefGoogle Scholar
  3. 3.
    Tomachinskaya L A and Tret’yakova I N 2007 Effect of styryl substituents introduced into the periphery of pyrazinoporphyrazine macrocycle on the spectral and luminescence properties of complexes Theor. Exp. Chem. 43 125CrossRefGoogle Scholar
  4. 4.
    Villano M, Amendola V, Sandona G, Donzello M P, Ercolani C and Meneghetti M 2006 Excited state dynamics and nonlinear absorption of a pyrazinoporphyrazine macrocycle carrying externally appended pyridine rings J. Phys. Chem. B 110 24354CrossRefGoogle Scholar
  5. 5.
    Shishkin V N, Kudrik E V, Makarov S V and Shaposhnikov G P 2007 Cobalt 4-octasulfophenyltetrapyrazinoporphyrazine as a catalyst for the oxidation of organic substrates with atmospheric oxygen Kinet. Catal. 48 660Google Scholar
  6. 6.
    Morkved E H, Andreassen T, Frohlich R, Mo F and Biuheim P 2010 Unsymmetrical zinc azaphthalocyanines, peripherally substituted with thiophen-2-yl and 2-functionalized phenoxy groups Polyhedron 29 3229Google Scholar
  7. 7.
    Merkved E H, Ossletten H and Kjesen H 1999 Preparation of octal(alkoxy) azaphthalocyanines Acta Chem. Scand. 53 1117CrossRefGoogle Scholar
  8. 8.
    Donzello M P, Ercolani C, Novakova V, Zimcik P and Stuzhin P A 2016 Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information Coordin. Chem. Rev. 309 107Google Scholar
  9. 9.
    Kobayashi N 2003 In The Porphyrin Handbook K Kadish, K Smith and R Guilard (Eds.) (Amsterdam: Academic Press:) p. 161Google Scholar
  10. 10.
    Awasthi P K, Dixit S C, Dixit N and Sinha A K 2008 Eugenol derivatives as future potential drugs J. Pharm. Res. 1 215Google Scholar
  11. 11.
    Irie Y, Itokazu N, Anjiki N, Ishige A, Watanabe K and Keung W M 2004 Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus Brain Res. 1011 243Google Scholar
  12. 12.
    Langeveld W T, Veldhuizen E J A and Burt S A 2014 Synergy between essential oil components and antibiotics: A review Crit. Rev. Microbiol. 40 76Google Scholar
  13. 13.
    Burt S 2004 Essential oils: their antibacterial properties and potential applications in foods—A review Int. J. Food Microbiol. 94 223CrossRefGoogle Scholar
  14. 14.
    (a) Sasmaz S, Agar E and Agar A 1999 Synthesis and characterization of phthalocyanines containing 4-allyl-2-methoxyphenyl moieties Dyes Pigm. 42 117; (b) Agar E, Sasmaz S and Agar A 1999 Synthesis and properties of the phthalocyanines containing eugenol (4-allyl-2-methoxyphenol) Turk. J. Chem. 23 131; (c) Ozguney A T, Kantar C, Saral P, Seventekin N and Sasmaz S 2013 Investigation of fastness properties and antibacterial effect of metallophthalocyanine (M: Zn) containing eugenol printed on cotton fabric Tekst Konfeksiyon 23 261; (d) Ağar E, Karaoğlu Ş A and Şaşmaz S 2003 Antimicrobial activities of some phthalocyanine derivatives J. Fac. Pharm. Gazı 20 79; (e) Kantar C, Sahin Z S, Buyukgungor O and Sasmaz S 2015 Microwave-assisted synthesis, characterization and spectral properties of non-peripherally tetra-substituted phthalocyanines containing eugenol moieties J. Mol. Struct. 1089 48CrossRefGoogle Scholar
  15. 15.
    (a) Ozturk S, Isik S, Akkurt M, Agar E, Sasmaz S and Fun H K 2000 Crystal structure of 1,2-bis(4-allyl-2-methoxyphenoxy)-4,5-dicyanobenzene Anal. Sci. 16 663; (b) Sahin O, Buyukgungor O, Sasmaz S and Kantar C 2007 4-(4-Allyl-2-methoxyphenoxy)benzene-1,2-dicarbonitrile Acta Crystallogr. E 63 O4205Google Scholar
  16. 16.
    Chandrasekar T and Raman N 2016 Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation J. Mol. Struct. 1116 146CrossRefGoogle Scholar
  17. 17.
    (a) Evren D, Burat A K, Ozcesmeci I and Sesalan B S 2013 Synthesis of novel tetracationic phthalocyanines and investigation of their DNA-binding properties Dyes Pigm. 96 475; (b) Dilber G, Durmus M, Kantekin H and Cakir V 2011 Synthesis and characterization of a new soluble metal-free and metallophthalocyanines bearing biphenyl-4-yl methoxy groups J. Organomet. Chem. 696 2805CrossRefGoogle Scholar
  18. 18.
    (a) Van Gaal L F, Mertens I L and De Block C E 2006 Mechanisms linking obesity with cardiovascular disease Nature 444 875; (b) Mentese E, Bektas H, Ulker S, Bekircan O and Kahveci B 2014 Microwave-assisted synthesis of new benzimidazole derivatives with lipase inhibition activity J. Enzym. Inhib. Med. Chem. 29 64Google Scholar
  19. 19.
    Sangwai M, Sardar S and Vavia P 2014 Nanoemulsified orlistat-embedded multi-unit pellet system (MUPS) with improved dissolution and pancreatic lipase inhibition Pharm. Dev. Technol. 19 31CrossRefGoogle Scholar
  20. 20.
    Kantar G K, Baltas N, MenteseE E and Sasmaz S 2015 Microwave-assisted synthesis and investigation of xanthine oxidase inhibition of new phthalonitrile and phthalocyanines containing morpholino substituted 1,2,4-triazole-3-one J. Organomet. Chem. 787 8CrossRefGoogle Scholar
  21. 21.
    (a) Nakamura A, Ataka T, Segawa H, Takeuchi Y and Takematsu T 1983 Studies on herbicidal 2,3-dicyanopyrazines. 1. structure-activity relationship of herbicidal 2,3-dicyano-5-substituted pyrazines Agric. Biol. Chem. Tokyo 47 1555; (b) Morkved E H, Holmaas L T, Kjosen H and Hvistendahl G 1996 Preparation of magnesium azaphthalocyanines by cyclotetramerisation of S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles Acta Chem. Scand. 50 1153Google Scholar
  22. 22.
    Sheldrick G M 2008 A short history of SHELX Acta Crystallogr. A 64 112Google Scholar
  23. 23.
    Farrugia L J 2012 WinGX and ORTEP for windows: An update J. Appl. Crystallogr. 45 849CrossRefGoogle Scholar
  24. 24.
    Mercury, version 3.0; CCDC. Accessed on 2016Google Scholar
  25. 25.
    Spek A L 2003 Single-crystal structure validation with the program PLATON J. Appl. Crystallogr. 36 7CrossRefGoogle Scholar
  26. 26.
    Zeballos N C L, Gauna G A, Vior M C G, Awruch J and Dicelio L E 2014 Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents J. Photochem. Photobiol. B 136 29CrossRefGoogle Scholar
  27. 27.
    Wolfe A, Shimer G H and Meehan T 1987 Polycyclic aromatic-hydrocarbons physically intercalate into duplex regions of denatured DNA Biochemistry 26 6392CrossRefGoogle Scholar
  28. 28.
    Winkler U K and Stuckmann M 1979 Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens J. Bacteriol. 138 663Google Scholar
  29. 29.
    (a) Gal’pern E G, Luk’yanets E A and Gal’pern M G 1973 Russ. Chem. Bull. 22 1925; (b) Stuzhin P and Ercolani C 2003 The Porphyrin Handbook (New York: Academic Press) 15 263CrossRefGoogle Scholar
  30. 30.
    Uslan C and Sesalan B S 2012 Synthesis of novel DNA-interacting phthalocyanines Dyes Pigm. 94 127Google Scholar
  31. 31.
    Aloulou A, Rodriguez J A, Fernandez S, van Oosterhout D, Puccinelli D and Carriere F 2006 Exploring the specific features of interfacial enzymology based on lipase studies BBA 1761 995Google Scholar
  32. 32.
    Delorme V, Dhouib R, Canaan S, Fotiadu F, Carriere F and Cavalier J F 2011 Effects of surfactants on lipase structure, activity, and inhibition Pharm. Res. 28 1831Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Günay Kaya Kantar
    • 1
  • Özlem Faiz
    • 1
  • Onur Şahin
    • 2
  • Selami Şaşmaz
    • 1
  1. 1.Department of Chemistry, Science and Art FacultyRecep Tayyip Erdogan UniversityRizeTurkey
  2. 2.Scientific and Technological Research Application and Research CenterSinop UniversitySinopTurkey

Personalised recommendations