Skip to main content
Log in

Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of \(\alpha \) and \(\beta \) toxin nanopores in lipid membranes

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Pore forming toxins (PFTs) are virulent proteins whose primary goal is to lyse target cells by unregulated pore formation. Molecular dynamics simulations can potentially provide molecular insights on the properties of the pore complex as well as the underlying pathways for pore formation. In this manuscript we compare both coarse-grained (MARTINI force-field) and all-atom simulations, and comment on the accuracy of the MARTINI coarse-grained method for simulating these large membrane protein pore complexes. We report 20 \(\mu \hbox {s}\) long coarse-grained MARTINI simulations of prototypical pores from two different classes of pore forming toxins (PFTs) in lipid membranes - Cytolysin A (ClyA), which is an example of an \(\alpha \) toxin, and \(\alpha \)-hemolysin (AHL) which is an example of a \(\beta \) toxin. We compare and contrast structural attributes such as the root mean square deviation (RMSD) histograms and the inner pore radius profiles from the MARTINI simulations with all-atom simulations. RMSD histograms sampled by the MARTINI simulations are about a factor of 2 larger, and the radius profiles show that the transmembrane domains of both ClyA and AHL pores undergo significant distortions, when compared with the all-atom simulations. In addition to the fully inserted transmembrane pores, membrane-inserted proteo-lipid ClyA arcs show large shape distortions with a tendency to close in the MARTINI simulations. While this phenomenon could be biologically plausible given the fact that \(\alpha \)-toxins can form pores of varying sizes, the additional flexibility is probably due to weaker inter-protomer interactions which are modulated by the elastic dynamic network in the MARTINI force-field. We conclude that there is further scope for refining inter-protomer contacts and perhaps membrane-protein interactions in the MARTINI coarse-grained framework. A robust coarse-grained force-field will enable one to reliably carry out mesoscopic simulations which are required to understand protomer oligomerization, pore formation and leakage.

Graphical Abstract:

SYNOPSIS Multimeric and non-selective transmembrane pores formed by bacterial toxins on the host cell cause cell death, and hence elucidating membrane-protein interactions accurately in molecular models is important for unraveling biological phenomena at molecular resolution. A comparison of coarse-grained (MARTINI) and all-atom simulations for two prototypical pores in lipid membranes show that the transmembrane domains of both pores undergo significant distortions in MARTINI but not in all-atom simulations. Additionally, transmembrane proteo-lipid arcs show large shape distortions with a tendency to close in the MARTINI simulations. This indicates that both inter-protein and membrane-protein interactions in the MARTINI framework must be refined further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gilbert R J C 2002 Pore-forming toxins Cell. Mol. Life Sci. 59 832

    Article  CAS  Google Scholar 

  2. Parker M W, and Feil S C 2005 Pore-forming protein toxins: from structure to function Progr. Biophys. Mol. Biol. 88 91

    Article  CAS  Google Scholar 

  3. Bayley H 1997 Toxin structure: part of a hole? Curr. Biol. 7 R763

    Article  CAS  Google Scholar 

  4. Bischofberger M, Gonzalez M R, and van der Goot F G 2009 Membrane injury by pore-forming proteins Curr. Opin. Cell Biol. 21 589

    Article  CAS  Google Scholar 

  5. Bhakdi S, Tranum-Jensen J and Sziegoleit A 1985 Mechanism of membrane damage by streptolysin-o Infect. Immun. 47 52

    CAS  Google Scholar 

  6. Metkar S S, Marchioretto M, Antonini V, Lunelli L, Wang B, Gilbert R J C, Anderluh G, Roth R, Pooga M, Pardo J, Heuser J E, Serra M D and Froelich C J 2015 Perforin oligomers form arcs in cellular membranes: A locus for intracellular delivery of granzymes Cell Death Differ. 22 74

    CAS  Google Scholar 

  7. Kristan K C, Viero G, Serra M D, Macek P and Anderluh G 2009 Molecular mechanism of pore formation by actinoporins Toxicon 54 1125

    Article  Google Scholar 

  8. Mueller M, Grauschopf U, Maier T, Glockshuber R and Ban N 2009 The structure of a cytolytic \(\alpha \)-helical toxin pore reveals its assembly mechanism Nature 459 726

    Article  CAS  Google Scholar 

  9. Reitz S and Essen L-O 2009 \(\alpha \)-helical cytolysins: molecular tunnel-boring machines in action Chem. Bio. Chem. 10 2305

    Article  CAS  Google Scholar 

  10. Woolfson D N, Bartlett G J, Bruning M and Thomson A R 2012 New currency for old rope: From coiled-coil assemblies to \(\alpha \)-helical barrels Curr. Opin. Struct. Biol. 22 432

    Article  CAS  Google Scholar 

  11. Pluhackova K, Wassenaar T A and Bockmann R A 2013 Molecular dynamics simulations of membrane proteins Methods Mol. Biol. 1033 85

    CAS  Google Scholar 

  12. Lindahl E and Sansom M S P 2008 Membrane proteins: molecular dynamics simulations Curr. Opin. Struct. Biol. 18 425

    Article  CAS  Google Scholar 

  13. Perilla J R, Goh B C, Cassidy C K, Liu B, Bernardi R C, Rudack T, Yu H, Wu Z and Schulten K 2015 Molecular dynamics simulations of large macromolecular complexes Curr. Opin. Struct. Biol. 31 64

    Article  CAS  Google Scholar 

  14. Stansfeld P J and Sansom M S P 2011 Molecular simulation approaches to membrane proteins Structure 19 1562

    CAS  Google Scholar 

  15. Prasanna X, Chattopadhyay A and Sengupta D 2014 Cholesterol modulates the dimer interface of the \(\beta \)2-adrenergic receptor via cholesterol occupancy sites Biophys. J. 106 1290

  16. Marrink S J and Tieleman D P 2013 Perspective on the martini model Chem. Soc. Rev. 42 6801

    Article  CAS  Google Scholar 

  17. Lin X, Eddy N R, Noel J K, Whitford P C, Wang Q, Ma J and Onuchic J N 2014 Order and disorder control the functional rearrangement of influenza hemagglutinin Proc. Nat. Acad. Sci. 111 12049

    Article  CAS  Google Scholar 

  18. Aksimentiev A and Schulten K 2005 Imaging \(\alpha \)-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map Biophys. J. 88 3745

  19. Wong-ekkabut J and Karttunen M 2012 Assessment of common simulation protocols for simulations of nanopores, membrane proteins, and channels J. Chem. Theory Comput. 8 2905

    Article  CAS  Google Scholar 

  20. Mathe J, Aksimentiev A, Nelson D R, Schulten K and Meller A 2005 Orientation discrimination of single-stranded dna inside the \(\alpha \)-hemolysin membrane channel Proc. Nat. Acad. Sci. U.S.A. 102 12377

    Article  CAS  Google Scholar 

  21. Di Marino D, Bonome E L, Tramontano A and Chinappi M 2015 All-atom molecular dynamics simulation of protein translocation through an \(\alpha \)-hemolysin nanopore J. Phys. Chem. Lett. 6 2963

    Article  Google Scholar 

  22. Stoddart D, Ayub M, Hofler L, Raychaudhuri P, Klingelhoefer J W, Maglia G, Heron A and Bayley H 2014 Functional truncated membrane pores Proc. Natl. Acad. Sci. U.S.A. 111 2425

    Article  CAS  Google Scholar 

  23. Mandal T, Kanchi S, Ayappa K G and Maiti P K 2016 ph controlled gating of toxic protein pores by dendrimers Nanoscale 8 13045

  24. Sathyanarayana P, Desikan R, Ganapathy Ayappa K and Visweswariah S S 2016 The solvent-exposed c-terminus of the cytolysin a pore-forming toxin directs pore formation and channel function in membranes Biochemistry 55 5952

    Article  CAS  Google Scholar 

  25. Hemanth Giri Rao V V, Desikan R, Ganapathy Ayappa K and Gosavi S 2016 Capturing the membrane-triggered conformational transition of an \(\alpha \)-helical pore-forming toxin J. Phys. Chem. B 120 12064

    Article  Google Scholar 

  26. Bond P J, Parton D L, Clark J F and Sansom M S P 2008 Coarse-grained simulations of the membrane-active antimicrobial peptide maculatin 1.1 Biophys. J. 95 3802

    Article  CAS  Google Scholar 

  27. Marrink S J and Tieleman D P 2013 Perspective on the martini model Chem. Soc. Rev. 42 6801

    Article  CAS  Google Scholar 

  28. Szilárd Páll S P, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B and Lindahl E 2013 Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit Bioinformatics 29 845

  29. Marrink S J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 The martini force field: Coarse grained model for biomolecular simulations J. Phys. Chem. B 111 7812

    Article  CAS  Google Scholar 

  30. Monticelli L, Kandasamy S K, Periole X, Larson R G, Tieleman D P and Marrink S-J 2008 The martini coarse-grained force field: Extension to proteins J. Chem. Theory Comput. 4 819

    Article  CAS  Google Scholar 

  31. Periole X, Cavalli M, Marrink S-J and Ceruso M A 2009 Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition J. Chem. Theory Comput. 5 2531

    Article  CAS  Google Scholar 

  32. Zhang Y 2008 I-tasser server for protein 3d structure prediction BMC Bioinform. 9 40

    Article  Google Scholar 

  33. Roy A, Kucukural A and Zhang Y 2010 I-tasser: a unified platform for automated protein structure and function prediction Nat. Protoc. 5 725

    Article  CAS  Google Scholar 

  34. Kabsch W and Sander C 1983 Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features Biopolymers 22 2577

  35. Globisch C, Krishnamani V, Deserno M and Peter C 2013 Optimization of an elastic network augmented coarse grained model to study ccmv capsid deformation PLoS ONE 8 e60582

    Article  CAS  Google Scholar 

  36. Desikan R 2016 Molecular Analysis of the Pore Forming Mechanism of an \(\alpha \)-helical Cytolysin. PhD thesis, Indian Institute of Science

  37. Bussi G, Donadio D and Parrinello M 2007 Canonical sampling through velocity rescaling J. Chem. Phys. 126 014101

    Article  Google Scholar 

  38. Parrinello M and Rahman A 1981 Polymorphic transitions in single crystals: A new molecular dynamics method J. Appl. Phys. 52 7182

    Article  CAS  Google Scholar 

  39. Mantina M, Chamberlin A C, Valero R, Cramer C J and Truhlar D G 2009 Consistent van der Waals radii for the whole main group J. Phys. Chem. A 113 5806

    Article  CAS  Google Scholar 

  40. de Jong D H, Singh G, Bennett W F, Arnarez C, Wassenaar T A, Schafer L V, Periole X, Tieleman D P and Marrink S J 2013 Improved parameters for the martini coarse-grained protein force field J. Chem. Theory Comput. 9 687

    Article  Google Scholar 

  41. Song L, Hobaugh M R, Shustak C, Cheley S, Bayley H and Gouaux J E 1996 Structure of staphylococcal \(\alpha \)-hemolysin, a heptameric transmembrane pore Science 274 1859

    Article  CAS  Google Scholar 

  42. Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M and Tanaka I 2011 Crystal structure of the octameric pore of staphylococcal \(\gamma \)-barrel pore formation mechanism by two components Proc. Nat. Acad. Sci. 108 17314

  43. De S and Olson R 2011 Crystal structure of the vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins Proc. Nat. Acad. Sci. 108 7385

    Article  CAS  Google Scholar 

  44. Podobnik M, Savory P, Rojko N, Kisovec M, Wood N, Hambley R, Pugh J, Wallace E J, McNeill L, Bruce M, Liko I, Allison T M, Mehmood S, Yilmaz N, Kobayashi T, Gilbert R J, Robinson C V, Jayasinghe L and Anderluh G 2016 Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly Nat. Commun. 7 11598

    CAS  Google Scholar 

  45. Unno H, Goda S and Hatakeyama T 2014 Hemolytic lectin CEL-III heptamerizes via a large structural transition from \(\alpha \)-barrel during the transmembrane pore formation process J. Biol. Chem. 289 12805

  46. Tanaka K, Caaveiro J M M, Morante K, González-Manas J M and Tsumoto K 2015 Structural basis for self-assembly of a cytolytic pore lined by protein and lipid Nat. Commun. 6 6337

    Google Scholar 

  47. Bayley H 2009 Membrane-protein structure: Piercing insights Nature 459 651

    CAS  Google Scholar 

  48. Gouaux E 1997 Channel-forming toxins: Tales of transformation Curr. Opin. Struct. Biol. 7 566

  49. Mulvihill E, van Pee K, Mari S A, Muller D J and Yildiz O 2015 Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the cytolytic toxin listeriolysin O Nano Lett. 15 6965

    Google Scholar 

  50. Wallace A J, Stillman T J, Atkins A, Jamieson S J, Bullough P A, Green J and Artymiuk P J 2000 E. coli hemolysin e (hlye, clya, shea): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy Cell 100 265

    Article  CAS  Google Scholar 

  51. Tzokov S B, Wyborn N R, Stillman T J , Jamieson S, Czudnochowski N, Artymiuk P J, Green J and Bullough P A 2006 Structure of the hemolysin E (HlyE, ClyA, and SheA) channel in its membrane-bound form J. Biol. Chem. 281 23042

    Article  CAS  Google Scholar 

  52. Hunt S, Moir A J, Tzokov S, Bullough P A, Artymiuk P J and Green J 2008 The formation and structure of Escherichia coli K-12 haemolysin E pores Microbiol. (Reading, Engl.) 154 633

  53. Eifler N, Vetsch M, Gregorini M, Ringler P, Chami M, Philippsen A, Fritz A, Müller S A, Glockshuber R, Engel A and Grauschopf U 2006 Cytotoxin clya from Escherichia coli assembles to a 13-meric pore independent of its redox-state EMBO J. 25 2652

    Article  CAS  Google Scholar 

  54. Soskine M, Biesemans A, De Maeyer M and Maglia G 2013 Tuning the size and properties of ClyA nanopores assisted by directed evolution J. Am. Chem. Soc. 135 13456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant under the Department of Science and Technology, Government of India. We thank Durba Sengupta and Xavier Prasanna for several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Ayappa.

Additional information

Dedicated to the memory of the late Professor Charusita Chakravarty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desikan, R., Patra, S.M., Sarthak, K. et al. Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of \(\alpha \) and \(\beta \) toxin nanopores in lipid membranes. J Chem Sci 129, 1017–1030 (2017). https://doi.org/10.1007/s12039-017-1316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1316-0

Keywords

Navigation