Journal of Chemical Sciences

, Volume 129, Issue 5, pp 543–552 | Cite as

Interaction energies and structures of the \(\hbox {Li}^{+}{\cdot }(\hbox {CO})_{\hbox {n}}\) (n \(=\) 1–3) complexes

Regular Article


The bonding and structures of lithium ion carbonyl complexes, \(\hbox {Li}^{+}{\cdot }\)(CO)\(_{1-3}\), were studied at the CCSD and MP2 levels of theories. A linear configuration is formed for the global minimum of the \(\hbox {Li}^{+}{\cdot }\)CO and \(\hbox {Li}^{+}{\cdot }(\hbox {CO})_{2}\) complexes with bond dissociation energies of 13.7 and 12.4 kcal \(\hbox {mol}^{-1}\), respectively. For the \(\hbox {Li}^{+}{\cdot }(\hbox {CO})_{3}\) complex, a trigonal planar geometry is formed for the global minimum with a bond dissociation energy of 9.7 kcal \(\hbox {mol}^{-1}\). The computed sequential bond dissociation energies of \(\hbox {Li}^{+}{\cdot }(\hbox {CO})_{\mathrm{n}}\) (n \(=\) 1–3) complexes agreed with the experimental findings, in which the electrostatic energy plays an important role in the obtained trend.

Graphical abstract

Lithium ion binds with carbon oxides and form three complexes of linear and trigonal planar geometries. These structures affect their sequential bond dissociation energies based on the strength of electrostatic energy contributions. These results match the experimental findings.


Lithium ion complexes ab initio calculations bond dissociation energy electrostatic interaction carbon oxide 



JND would like to thank the Deanship of Research and Graduate Studies at the Hashemite University (Jordan) for the financial support.


  1. 1.
    Jensen F 1992 Structure and stability of complexes of glycine and glycine methyl analogs with \(\text{ H }^{+}\), \(\text{ Li }^{+}\) and \(\text{ Na }^{+}\) J. Am. Chem. Soc. 114 9533CrossRefGoogle Scholar
  2. 2.
    Ai H, Bu Y, Li P, Chen Z and Hu X 2004 Structure and positive binding energies of glycine-2Li+ in the gas phase: A theoretical study on optimal reaction pathway and proton transfer induced by two lithium cations J. Mol. Struct. THEOCHEM 678 91CrossRefGoogle Scholar
  3. 3.
    Yang R T 1987 Gas Separation by Adsorption Processes (Boston: Butterworths)Google Scholar
  4. 4.
    Lavalley J C 1996 Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules Catal. Today 27 377CrossRefGoogle Scholar
  5. 5.
    Jüntegn H 1977 New applications for carbonaceous adsorbents Carbon 15 273CrossRefGoogle Scholar
  6. 6.
    Areán C O, Nachtigallová D, Nachtigall P, Garrone E and Delgado M R 2007 Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites-the interplay of infrared spectroscopy and theoretical calculations Phys. Chem. Chem. Phys. 9 1421CrossRefGoogle Scholar
  7. 7.
    Reiss G 1994 Status and development of oxygen generation process on molecular sieve zeolites Gas Sep. Purif. 8 95Google Scholar
  8. 8.
    Chu X Z, Zhou Y P, Zhang Y Z, Su W, Sun Y and Zhou L 2006 Adsorption of hydrogen on micro- and mesoporous adsorbents with orderly structure J. Phys. Chem. B 110 22596CrossRefGoogle Scholar
  9. 9.
    Budenholzer F E, Gislason E A and Jorgensen A D 1986 Determination of potassium ion-small-molecule potentials from total cross section measurements Chem. Phys. 110 171CrossRefGoogle Scholar
  10. 10.
    Rogers M T and Armentrout P B 2000 Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation Mass Spectrom. Rev. 19 215CrossRefGoogle Scholar
  11. 11.
    Levine R D, Bernstein R B, LaBudde R A, Bōttner R, Ross U, Toennies J P, King D L, Loesch H J, Herschbach D R, Ding A M G, Polanyi J C, Kendall G M, Larsen R A, krenos J R and Aquilanti V 1973 General discussion Faraday Discuss. Chem. Soc. 55 221CrossRefGoogle Scholar
  12. 12.
    Steammler V 1976 Ab initio calculation of the potential energy surface of the system \(\text{ Li }^{+}\)/CO Chem. Phys. 17 187CrossRefGoogle Scholar
  13. 13.
    Del Bene J E, Frisch M J, Raghavacharj K, Pople J A and Schleyer P v R 1983 A molecular orbital study of some lithium ion complexes J. Phys. Chem. 87 73CrossRefGoogle Scholar
  14. 14.
    Walter D, Seviers M R and Armentrout P B 1998 Alkali ion carbonyls: Sequential bond energies of \(\text{ Li }^{+}(\text{ CO })_{x}\) (x = 1–3), \(\text{ Na }^{+}(\text{ CO })_{x}\) (\(x = 1, 2\)) and \(\text{ K }^{+}\)(CO) Int. J. Mass Spectrom. Ion Processes 175 93CrossRefGoogle Scholar
  15. 15.
    Hadjiivanov K, Massiani P and Knözinger H 1999 Low temperature CO and \(^{15}\text{ N }_{2}\) adsorption on alkali cation exchanged EMT zeolites: An FTIR study Phys. Chem. Chem. Phys. 1 3831CrossRefGoogle Scholar
  16. 16.
    Frisch M et al. 2003 Gaussian 03, Revision B.05, Pittsburgh: Gaussian, Inc.Google Scholar
  17. 17.
    Gonzalez C and Schlegel H B 1989 An improved algorithm for reaction path following J. Chem. Phys. 90 2154CrossRefGoogle Scholar
  18. 18.
    Gonzalez C and Schlegel H B 1990 Reaction path following in mass-weighted internal coordinates J. Phys. Chem. 94 5523CrossRefGoogle Scholar
  19. 19.
    Simon S, Duran M and Dannenberg J J 1996 How does basis set superposition error change the potential surfaces for hydrogen-bonded dimmers J. Chem. Phys. 105 11024CrossRefGoogle Scholar
  20. 20.
    Boys S F and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies: Some procedures with reduced errors Mol. Phys. 19 553CrossRefGoogle Scholar
  21. 21.
    Liu D, Wyttenbach T and Bowers M T 2004 Hydrogen of protonated primary amines: Effects of intermolecular and intramolecular hydrogen bonds Int. J. Mass Spectrom. 236 81CrossRefGoogle Scholar
  22. 22.
    Dawoud J N, Fasfous I I and Harahsheh T K 2014 Structure and potential energy surface of \(\text{ Na }^{+/0}\cdot (\text{ O }_{2})_{{\rm n}}\) (n =1–3) complexes Comput. Theor. Chem. 1027 62CrossRefGoogle Scholar
  23. 23.
    Fasfous I I, Dawoud J N, Sallabi A K and Hassouneh T S 2015 Adensity functional theory study of the \(\text{ Cu }^{+}{\cdot } (\text{ CO })_{{\rm n}}\) (n =1–3) complexes J. Coord. Chem. 68 1528CrossRefGoogle Scholar
  24. 24.
    Dawoud J N 2014 Sequential bond energies and the structures of \(\text{ Cr }^{+}{\cdot } (\text{ N }_{2})_{{\rm n}}\), (n =1–4) J. Chem. Sci. 126 1743CrossRefGoogle Scholar
  25. 25.
    Harrison J 2006 Relationship between the Charge Distribution and Dipole Moment Functions of CO and the Related Molecules CS, SiO, and SiS J. Phys. Chem. A 110 10848Google Scholar
  26. 26.
    Kim H, Doan V, Cho W, Valero R, Tehrani Z, Madridejos J and Kim K 2015 Intriguing Electrostatic Potential of CO: Negative Bond-ends and positive Bond-cylindrical-surface Sci. Rep. 5 16307CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceHashemite UniversityZarqaJordan

Personalised recommendations