Journal of Chemical Sciences

, Volume 129, Issue 5, pp 623–636 | Cite as

Synthesis of novel bis-allyloxy and hydroxypropoxy derivatives of 4, 5-diaryl thiophene-2-carboxylic acid and their biological evaluation

  • T Shanmuganathan
  • M Venugopal
  • K Parthasarathy
  • N Dhatchanamoorthy
  • Y Arun
  • A A M Prince
Regular Article


In our earlier studies, we have shown that the introduction of amino moieties at carboxylic acid of 4,5-diarylthiophene-2-carboxylic acid significantly improved the anti-inflammatory activity of the compound against the standard drug diclofenac sodium. In the present study, we have synthesized new derivatives of 4,5-diarylthiophene-2-carboxylic acid by modifying the hydroxyl group of the phenyl ring and carboxylic acid group of the thiophene ring. A series of novel 4,5-diarylthiophene-2-carboxylic acid derivatives containing bis-allyloxy and hydroxypropoxy with methyl or ethyl ester moieties were synthesized, characterized and subsequently evaluated for anti-inflammatory and antioxidant property. Among the novel compounds, the inhibition of bovine serum albumin denaturation assay revealed that the compound 4,5-bis(4-(3-hydroxypropoxy)phenyl)thiophene-2-carboxylic acid (15) and ethyl ester (13) having anti-inflammatory activity better than the standard drug diclofenac sodium. The antioxidant screening showing 4,5-bis(4-(allyloxy)phenyl)thiophene-2-carboxylic acid (10), 4,5-bis(4-(3-hydroxypropoxy)phenyl)thiophene-2-carboxylic acid methyl ester (11) and 4,5-bis(4-(3-hydroxypropoxy)phenyl)thiophene-2-carboxylic acid ethyl ester (13) exhibited a slightly moderate antioxidant activity than standard ascorbic acid. Molecular docking analysis was performed for the synthesized compounds with the cyclooxygenase-2 (COX-2) receptor (PDB 1D: 1PXX). Docking studies revealed that all the synthesised compounds exhibit greater binding affinity than the standard drug. Particularly, the compound ethyl 4,5-bis(4-(allyloxy)phenyl)thiophene-2-carboxylate (8) and allyl 4,5-bis(4-(allyloxy)phenyl)thiophene-2-carboxylate (9) having high free energy binding of −10.40 and −10.48 Kcal/mol, respectively.

Graphical Abstract.

Synopsis: A new series of bis-allyloxy and hydroxypropoxy substituted 4,5-diarylthiophene-2-carboxylic acid derivatives were synthesized, characterized, evaluated their in vitro anti-inflammatory and anti-oxidant activity, and performed molecular docking study.


Bis-allyloxy derivatives hydroxypropoxy derivatives 4,5-diarylthiophene-2-carboxylic acid anti-inflammatory antioxidant molecular docking 



The authors are thankful to the management of Orchid Pharma Limited, Chennai 600 119, India and Ramakrishna Mission Vivekananda College, Chennai 600 004, India for providing the required facilities.

Supplementary material

12039_2017_1274_MOESM1_ESM.docx (17.9 mb)
Supplementary material 1 (docx 18315 KB)


  1. 1.
    Reitz D B and Isakson P C 1995 Cyclooxygenase-2 inhibitors Curr. Pharm. Des. 1 211Google Scholar
  2. 2.
    Gadad A K, Palkar M B, Anand K, Noolvi M N, Boreddy T S and Wagwade J 2008 Synthesis and biological evaluation of 2-trifluoromethyl/sulfonamido-5,6-diaryl substituted imidazo[2,1-b]-1,3,4-thiadiazoles: A novel class of cyclooxygenase-2 inhibitors Bioorg. Med. Chem. 16 276CrossRefGoogle Scholar
  3. 3.
    Sall D J, Bastian J A, Briggs S L, Buben J A, Chirgadze N Y, Clawson D K, Denney M L, Giera D D, Gifford-Moore D S, Harper R W, Hauser K L, Klimkowski V J, Kohn T J, Lin H-S, McCowan J R, Palkowitz A D, Smith G F, Takeuchi K, Thrasher K J, Tinsley J M, Utterback B G, Yan S-C B and Zhang M 1997 Dibasic Benzo[b]thiophene derivatives as a novel class of active site-directed thrombin inhibitors. 1. Determination of the serine protease selectivity, structure–activity relationships, and binding orientation J. Med. Chem. 40 3489CrossRefGoogle Scholar
  4. 4.
    Leblanc Y, Roy P, Boyce S, Brideau C, Chan C C, Charleson S, Gordon R, Grimm E, Guay J, Léger S, Li C S, Riendeau D, Visco D, Wang Z, Webb J, Xu L J and Prasit P 1999 SAR in the alkoxy lactone series: The discovery of DFP, a potent and orally active COX-2 inhibitor Bioorg. Med. Chem. Lett. 9 2207CrossRefGoogle Scholar
  5. 5.
    Lau C K, Brideau C, Chi Chung C, Charleson S, Cromlish W A, Ethier D, Gauthier J Y, Gordon R, Guay J, Kargman S, Li C-S, Prasit P, Reindeau D, Thérien M, Visco D M and Lijing X 1999 Synthesis and biological evaluation of 3-heteroaryloxy-4-phenyl-2(5H)- furanones as selective COX-2 inhibitors Bioorg. Med. Chem. Lett. 9 3187CrossRefGoogle Scholar
  6. 6.
    Pillarella J, Higashi A, Alexander G C and Conti R 2012 Trends in use of second-generation antipsychotics for treatment of bipolar disorder in the United States, 1998–2009 Psychiatr. Serv. 63 83Google Scholar
  7. 7.
    Araki K, Nakanishi M and Shiroki M 1974 Thieno-(2,3-e)(1,4)diazepin-2-ones U.S. Patent 3849405Google Scholar
  8. 8.
    Tinney F J 1971 Tetrahydrobenzothienodiazepinone compounds U.S. Patent 3558606Google Scholar
  9. 9.
    Fink M and Irwin P 1981 Pharmacoelectroencephalographic study of brotizolam a novel hypnotic Clin. Pharmacol. Ther. 30 336CrossRefGoogle Scholar
  10. 10.
    Chan L, Das S K, Reddy T J, Poisson C, Proulx M, Pereira O, Courchesne M, Roy C, Wang W, Siddiqui A, Yannopoulos C G, Nguyen-Ba N, Labrecque D, Bethell R, Hamel M, Courtemanche-Asselin P, L’Heureux L, David M, Nicolas O, Brunette S, Bilimoria D and Bédard J 2004 Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: Sulfonamides Bioorg. Med. Chem. Lett. 14 793CrossRefGoogle Scholar
  11. 11.
    Radwan M A A, Shehab M A and El-Shenawy S M 2008 Synthesis and biological evaluation of 5-substituted benzo[b]thiophene derivatives as anti-inflammatory agents Monatsh. Chem. 140 445Google Scholar
  12. 12.
    Wierzbicki M, Sauveur F, Bonnet J and Tordjman C 1998 Thiophene compounds U.S. Patent 5705525Google Scholar
  13. 13.
    Lindner M, Sippl W and Radwan A A 2010 Pharmacophore elucidation and molecular docking studies on 5-phenyl-1-(3-pyridyl)-1h-1,2,4-triazole-3-carboxylic acid derivatives as COX-2 inhibitors Sci. Pharm. 78 195Google Scholar
  14. 14.
    Kalgutkar A S, Crews B C, Rowlinson S W, Marnett A B, Kozak K R, Remmel R P and Marnett L J 2000 Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: Facile conversion of nonsteroidal anti-inflammatory drugs to potent and highly selective COX-2 inhibitors Proc. Natl. Sci. U.S.A. 97 925CrossRefGoogle Scholar
  15. 15.
    Blobaum A L and Marnett L J 2007 Molecular determinants for the selective inhibition of cyclooxygenase-2 by Lumiracoxib J. Biol. Chem. 282 16379CrossRefGoogle Scholar
  16. 16.
    Shanmuganathan T, Parthasarathy K, Venugopal M, Arun Y, Dhatchanamoorthy N and Prince A A M 2017 Synthesis, in vitro anti-inflammatory activity and molecular docking studies of novel 4,5-diarylthiophene-2-carboxamide derivatives J. Chem. Sci. 129 117CrossRefGoogle Scholar
  17. 17.
    Mizushima Y and Kobayashi M 1968 Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins J. Pharm. Pharmacol. 20 169CrossRefGoogle Scholar
  18. 18.
    Rajadurai R, Padmanabhan R and Ananthan S 2013 Synthesis and biological evaluation of diamide derivatives of (S)-BINOL and biphenyl as potential anti-inflammatory/anti-arthritic agents Med. Chem. Res. 22 4164Google Scholar
  19. 19.
    Shamsuzzaman, Mashrai A, Khanam H, Asif M, Ali A, Sherwani A and Owais M 2015 Green synthesis and biological evaluation of steroidal 2H-pyrans as anticancer and antioxidant agents J. King Saud Univ. Sci. 27 1Google Scholar
  20. 20.
    Sanner M F 1999 Python: A programming language for software integration and development J. Mol. Graph. Model. 17 57Google Scholar
  21. 21.
    Morris G M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S and Olson A J 2009 AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility J. Comput. Chem. 30 2785CrossRefGoogle Scholar
  22. 22.
    Kiefer J R, Rowlinson S W, Prusakiewicz J J, Pawlitz J L, Kozak K R, Kalgutkar A S, Stallings W C, Marnett L J and Kurumbail R G 2003 Crystal structure of Diclofenac bound to the cyclooxygenase active site of COX-2. doi: 10.2210/pdb1pxx/pdb
  23. 23.
    Tordjman C, Sauveur F, Droual M, Briss S, Andre N, Bellot I, Deschamps C and Wierzbicki M 2003 Synthesis of the butanamide derivative S 19812, a new dual inhibitor of cyclooxygenase and lipoxygenase pathways Arzneimittel-Forsch. 53 774Google Scholar
  24. 24.
    Wang Z, Yang Q, Bai Z, Sun J, Jiang X, Song H, Wu Y and Zhang W 2015 Synthesis and biological evaluation of 2,3-diarylthiophene analogues of combretastatin A-4 Med. Chem. Comm. 6 971CrossRefGoogle Scholar
  25. 25.
    Kvitko I Y 1969 Synthesis of derivatives of thieno[2,3-c]pyrazole and thieno[2,3-d]thiazoline Chem. Heterocycl. Comp. 5 567CrossRefGoogle Scholar
  26. 26.
    Kobayashi K, Shimizu H, Sasaki A and H Suginome H 1993 Photoinduced molecular transformations. 140. New one-step general synthesis of naphtho[2,3-b]furan-4,9-diones and their 2,3-dihydro derivatives by the regioselective [3+2] photoaddition of 2-hydroxy-1,4-naphthoquinones with various alkynes and alkenes: application of the photoaddition to a two-step synthesis of maturinone J. Org. Chem. 58 4614Google Scholar
  27. 27.
    Kongkathip N, Kongkathip B, Siripong P, Sangma C, Luangkamin S, Niyomdecha M, Pattanapa S, Piyaviriyagul S and Kongsaeree P 2003 Potent antitumor activity of synthetic 1,2-naphthoquinones and 1,4-naphthoquinones Bioorg. Med. Chem. 11 3179CrossRefGoogle Scholar
  28. 28.
    Arun Y, Saranraj K, Balachandran C and Perumal P T 2014 Novel spirooxindole–pyrrolidine compounds: Synthesis, anticancer and molecular docking studies Eur. J. Med. Chem. 74 50Google Scholar
  29. 29.
    Bhagavat R, Saqib A and Karigar C 2012 Molecular docking studies of novel palmitoyl-ligands for cyclooxygenase-2 Chem. Bio. Drug Des. 79 1043CrossRefGoogle Scholar
  30. 30.
    De Simone R, Chini M G, Bruno I, Riccio R, Mueller D, Werz O and Bifulco G 2011 Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1,5- lipoxygenase and 5-lipoxygenase-activating protein: Promising hits for the development of new anti-inflammatory agents J. Med. Chem. 54 1565CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • T Shanmuganathan
    • 1
    • 2
  • M Venugopal
    • 3
  • K Parthasarathy
    • 4
  • N Dhatchanamoorthy
    • 1
  • Y Arun
    • 5
  • A A M Prince
    • 2
  1. 1.Orchid Pharma Ltd, R&D CentreChennaiIndia
  2. 2.Department of chemistryRamakrishna Mission Vivekananda CollegeChennaiIndia
  3. 3.Ven Biotech Private LimitedChennaiIndia
  4. 4.Department of Chemistry, Siddha Central Research InstituteCentral Council for Research in SiddhaChennaiIndia
  5. 5.Organic Chemistry DivisionCentral Leather Research Institute (CSIR)ChennaiIndia

Personalised recommendations