Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 5, pp 609–622 | Cite as

DNA interactions and biocidal activity of metal complexes of benzothiazole Schiff bases: synthesis, characterization and validation

  • Narendrula Vamsikrishna
  • Marri Pradeep Kumar
  • Gali Ramesh
  • Nirmala Ganji
  • Sreenu Daravath
  • Shivaraj
Regular Article

Abstract

Binary complexes of Cu(II), Ni(II) and Co(II) were synthesized using two novel Schiff bases \(\mathbf{L}_{1}\) = 2-(-(benzothiazol-6-ylimino)methyl)-4-chlorophenol (BTEMCP), \(\mathbf{L}_{2}\) = 2-(-(benzothiazol-6-ylimino)methyl)-4-nitrophenol. The Schiff bases and metal complexes were characterized by analytical and spectral methods like elemental analysis, Mass, \(^{1}\hbox {H}\)-NMR, \(^{13}\hbox {C}\)-NMR, UV-Vis, IR, ESR, SEM, EDX, XRD and magnetic susceptibility measurements. From the analytical data, square planar geometry has been proposed for all the metal complexes. The binding interaction between the metal complexes and DNA was investigated by means of electronic absorption, fluorescence spectroscopy and viscosity measurements. The DNA cleavage ability of the metal complexes was also evaluated by agarose gel electrophoresis method. These studies revealed that the complexes showed an intercalative mode of binding to CT DNA and also effectively cleaved the supercoiled pBR DNA. The synthesised compounds were evaluated for in vitro antibacterial activity against Gram positive and Gram negative bacteria, and found that the metal complexes showed more potent biocidal activity than the Schiff bases.

Graphical Abstract.

SYNOPSIS Six mononuclear metal complexes of benzothiazole Schiff bases were synthesized and characterized. The DNA interaction studies showed that all the complexes bind with CT-DNA through an intercalative mode. Supercoiled pBR322 DNA was effectively cleaved by the complexes . All the metal complexes exhibited better antibacterial activity than the Schiff bases from which they were prepared.

Keywords

Schiff base binary complex DNA binding cleavage fluorescence viscosity 

Notes

Acknowledgements

We express our sincere and heartfelt thanks to the Head, Department of Chemistry for providing the necessary facilities. We are thankful to the Director, CFRD, Osmania University, Hyderabad, and the Director, IICT, Hyderabad, and the SAIF, IIT Bombay for providing spectral and analytical data. We are also thankful to CSIR, New Delhi, DST-SERB, DST-PURSE, DST-FIST and UGC-UPE (FAR) for providing financial assistance. Funding was provided by Council for Scientific and Industrial Research (Grant No. 09/132(0799)/2012-EMR-I).

Supplementary material

12039_2017_1273_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (docx 4588 KB)

References

  1. 1.
    Rosenberg B, Van Camp L and Krigas T 1965 Inhibiton of cell division in Escherichia coli by electrolysis products from a platinum electrode Nature 205 698Google Scholar
  2. 2.
    Barton J K and Lolis E 1985 Chiral discrimination in the covalent binding of bis(phenanthroline)dichlororuthenium(II) to B-DNA J. Am. Chem. Soc. 107 708CrossRefGoogle Scholar
  3. 3.
    Guo Z and Sadler P J 2000 Medicinal inorganic chemistry Adv. Inorg. Chem. 49 183CrossRefGoogle Scholar
  4. 4.
    Erkkila K E, Odom D T and Barton J K 1999 Recognition and reaction of metallointercalators with DNA Chem. Rev. 99 2777Google Scholar
  5. 5.
    Lippert B 2000 Multiplicity of metal ion binding patterns to nucleo bases Coord. Chem. Rev. 200 487CrossRefGoogle Scholar
  6. 6.
    Li C, Liu S L, Guo L H and Chen D P 2005 A new chemically amplified electrochemical system for DNA detection in solution Electrochem. Commun. Chem. 7 23Google Scholar
  7. 7.
    Howe-Grant M and Lippard S J 1979 Binding of Platinum (II) Intercalation reagents to deoxyribonucleic acid. Dependence on base-pair composition, nature of the intercalator, and ionic strength Biochemistry  18 5757Google Scholar
  8. 8.
    Blaskoa A and Bruice T C 1999 Recent studies of nucleophilic, general-acid, and metal ion catalysis of phosphate diester hydrolysis Acc. Chem. Res. 32 475Google Scholar
  9. 9.
    Burrows C J and Muller J G 1998 Oxidative Nucleobase Modifications Leading to Strand Scission Chem. Rev.  98 1109CrossRefGoogle Scholar
  10. 10.
    Sinha R P and Hader D P 2002 UV-induced DNA damage and repair: a review Photochem. Photobiol. Sci. 1 225CrossRefGoogle Scholar
  11. 11.
    Klein A V and Hambley T W 2009 Platinum drug distribution in cancer cells and tumors Chem. Rev.  109 4911CrossRefGoogle Scholar
  12. 12.
    Gust R, Beck W, Jaouen G and Schonenberger H 2009 Optimization of cisplatin for the treatment of hormone dependent tumoral diseases Part 1: use of steroidal ligands Coord. Chem. Rev.  253 2742CrossRefGoogle Scholar
  13. 13.
    Soni B, Ranawat M S, Sharma R, Bhandari A and Sharma S 2010 Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents Eur. J. Med. Chem. 45 2938CrossRefGoogle Scholar
  14. 14.
    Shafi S, Alam M M, Naveen M, Chaitanya M, and Vanaja G 2012 Synthesis and in vitro anti-HIV activity of \(N\)-1,3-benzo[\(d\)]thiazol-2-yl-2-(2-oxo-2\(H\)-chromen-4-yl)acetamide derivatives using MTT method Eur. J. Med. Chem. 49 324CrossRefGoogle Scholar
  15. 15.
    Bhavsar D, Trivedi J, Parekh S, Savant M, Thakrar S, Bavishi A, Radadiya A, Vala H, Lunagariya J, Parmar M, Paresh L, Loddo R and Shah A 2011 Synthesis and in vitro anti-HIV activity of \(N\)-1,3-benzo[\(d\)]thiazol-2-yl-2-(2-oxo-2\(H\)-chromen-4-yl)acetamide derivatives using MTT method Bioorg. Med. Chem. Lett. 21 3443CrossRefGoogle Scholar
  16. 16.
    Delmas F, Avellaneda A and Giorgio C D et.al 2004 Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives Eur. J. Med. Chem. 39 685CrossRefGoogle Scholar
  17. 17.
    Pereira G A, Massabni A C and Castellano E E 2012 A broad study of two new promising antimycobacterial drugs: Ag(I) and Au(I) complexes with 2-(2-thienyl)benzothiazole Polyhedron 38 296CrossRefGoogle Scholar
  18. 18.
    Burger A and Sawhey S N 1968 Antimalarials III Benzothiazole amino alcohols J. Med. Chem. 11 270CrossRefGoogle Scholar
  19. 19.
    Sharpe T R, Cherkofsky S C, Hewes W E, Smith D H, Gregory W A, Haber S B, Leadbetter M R and Whitney J G 1985 Preparation and antiarthritic and analgesic activity of 4,5-diaryl-2-(substituted thio)-1H-imidazoles and their sulfoxides and sulfones J. Med. Chem. 28 118CrossRefGoogle Scholar
  20. 20.
    Fu X B, Lin Z H, Liu H F and Le X Y 2014 A new ternary copper(II) complex derived from 2-(2\(\prime \)-pyridyl)benzimidazole and glycylglycine: Synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction Spectrochim. Acta A Mol. Biomol. Spectrosc.  122 22Google Scholar
  21. 21.
    Porchia M, Dolmella A, Gandin V, Marzano C, Peruzzo M P V, Refosco F, Santini C and Tisato F 2013 Neutral and charged phosphine/scorpionate copper(I) complexes: Effects of ligand assembly on their antiproliferative activity Eur. J. Med. Chem. 59 218CrossRefGoogle Scholar
  22. 22.
    Mancin F, Scrimin P, Tecilla P and Tonellato U 2005 Artificial metallonucleases Chem. Commun. 2005 2540–2548. doi: 10.1039/b418164f
  23. 23.
    Manikandamathavan V M, Parameswari R P, Weyhermuller T, Vasanthi H R and Nair B U 2011 Cytotoxic copper (II) mixed ligand complexes: Crystal structure and DNA cleavage activity Eur. J. Med. Chem.  46 4537Google Scholar
  24. 24.
    Borges B E, Teixeira V R, Appel M H, Steclan C A, Rigo F and Neto F F et al. 2013 De novo galectin-3 expression influences the response of melanoma cells to isatin-Schiff base copper(II) complex-induced oxidative stimulus Chem. Biol. Interact. 206 37CrossRefGoogle Scholar
  25. 25.
    Selvakumaran N, Bhuvanesh N S P, Endo A and Karvembu R 2014 Synthesis, structure, DNA and protein binding studies, and cytotoxic activity of nickel(II) complexes containing 3,3-dialkyl/aryl-1-(2,4-dichlorobenzoyl)thiourea ligands Polyhedron 75 95CrossRefGoogle Scholar
  26. 26.
    Shafaatian B, Soleymanpour A, Oskouei N K, Notash B and Rezvani S A 2014 Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes Spectrochim. Acta. Part A 128 363CrossRefGoogle Scholar
  27. 27.
    Bottcher A, Takeuchi T, Simon M I, Meade T J and Gray H B 1995 Irreversible enzymatic inhibition by cobalt Chelate complexes J. Inorg. Biochem. 59 221CrossRefGoogle Scholar
  28. 28.
    Das S, Ranjani A and Gayathri L et al. 2016 Recognition of self-assembled water-nitrate cluster in a Co(III)-2,2\(^{\prime }\)-bipyridine host: synthesis, x-ray structure, DNA cleavage, molecular docking and anticancer activity J. Chem. Sci128 1755CrossRefGoogle Scholar
  29. 29.
    Widom J and Baldwin R L 1980 Cation-induced toroidal condensation of DNA studies with Co\(^{3+}\)(NH\(_3)_6\) J. Mo. Biol. 144 431CrossRefGoogle Scholar
  30. 30.
    Kumar M P, Tejaswi S, Rambabu A, Veerendra Kumar A K and Shivaraj 2015 Synthesis, crystal structure, DNA binding and cleavage studies of copper(II) complexes with isoxazole Schiff base Polyhedron 102 111Google Scholar
  31. 31.
    Rambabu A, Kumar M P, Tejaswi S, Vamsikrishna N and Shivaraj 2016 DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)benzothiazole Schiff base ligands J. Photochem. Photobiol. B 165 147CrossRefGoogle Scholar
  32. 32.
    Vamsikrishna N, Kumar M P, Tejaswi S, Rambabu A and Shivaraj 2016 DNA binding, cleavage and antibacterial activity of mononuclear Cu(II), Ni(II) and Co(II) complexes derived from novel benzothiazole schiff bases J. Fluoresc.  26 1317CrossRefGoogle Scholar
  33. 33.
    Marmur J 1961 A procedure for the isolation of deoxyribonucleic acid from micro-organisms J. Mol. Biol. 3 208CrossRefGoogle Scholar
  34. 34.
    Reichmann M E, Rice S A, Thomas C A and Doty P 1954 A further examination of the molecular weight and size of desoxy pentose nucleic acid J. Am. Chem. Soc. 76 3047CrossRefGoogle Scholar
  35. 35.
    Wolfe A, Shimer G H, Meehan T, Wolfe A, Shimer G H and Meehan T 1987 Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA Biochemistry 26 6392CrossRefGoogle Scholar
  36. 36.
    Maity D, Drew M G B, Godsell J F, Roy S and Mukhopadhyay G 2010 Synthesis and characterization of Cu(II) complexes of tetradentate and tridentate symmetrical Schiff base ligands involving \(o\)-phenelenediamine, salicylaldehyde and diacetylmonoxime Trans. Met. Chem. 35 197CrossRefGoogle Scholar
  37. 37.
    Bhunora S, Mugo J, Bhaw-Luximon A, Mapolie S, Van Wyk J, Darkwa J and Nordlander E 2011 The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides: Ligand effects on polymer characteristics Appl. Organomet. Chem. 25 133Google Scholar
  38. 38.
    Saydam S and Yilmaz E 2006 Synthesis, characterization and thermal behavior of 4-chloromethyl-2-(2-hydroxybenzilidenehydrazino) thiazole and its complexes with Cr(III), Co(II), Ni(II) and Cu(II) Spectro. Chim. Acta A  63 506CrossRefGoogle Scholar
  39. 39.
    Nakamoto K 1997 Infrared and Raman Spectra of Inorganic and Coordination Compounds 5\(^{\rm th}\) ed. (New York: Wiley-Interscience)Google Scholar
  40. 40.
    Bellamy L J 1980 The Infrared Spectra of Complex Molecules 2\(^{\rm nd}\) ed. (London: Chapmann and Hall)Google Scholar
  41. 41.
    Rahaman A, Imatiyaz Y, Afazal M, Srivastva S, Saikrishna S and Farukh 2015 Enantiomeric fluoro-substituted benzothiazole Schiff base-valine Cu(II)/Zn(II) complexes as chemotherapeutic agents: DNA binding profile, cleavage activity, MTT assay and cell imaging studies J. Photochem. Photobiol. B 143 61CrossRefGoogle Scholar
  42. 42.
    Takjoo R and Centore R 2013 Synthesis, X-ray structure, spectroscopic properties and DFT studies of some dithiocarbazate complexes of nickel(II) J. Mol. Struct. 1031 180CrossRefGoogle Scholar
  43. 43.
    Lever A B P 1984 Inorganic Electronic Spectroscopy 2nd edn. (Amsterdam: Elsevier)Google Scholar
  44. 44.
    Shakir M, Summaiya H, Sherwani M A, Mohammad O and Al-Resayes S R 2015 Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies J. Mol. Struct. 1092 143CrossRefGoogle Scholar
  45. 45.
    Shakir M, Abbasi A, Faraz M and Sherwani 2015 A Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,N-bis-(2-thiophenecarboxaldimine)-3,30- diaminobenzidene, Schiff base ligand J. Mol. Struct.  1102 108CrossRefGoogle Scholar
  46. 46.
    Hathaway B J and Billing D E 1970 The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion Coord. Chem. Rev. 5 143CrossRefGoogle Scholar
  47. 47.
    Kivelson D and Neiman R 1961 ESR studies on the bonding in copper complexes J. Chem. Phys. 35 149Google Scholar
  48. 48.
    Tan L F, Chen X J, Shen J L and Liang X L 2009 Synthesis, DNA-binding and photocleavage studies of Ru(II) complexes of phenyl-(4,5,9,14-tetraaza-benzo[b]triphenylen-1,1-yl)-methanone J. Chem. Sci. 121 397CrossRefGoogle Scholar
  49. 49.
    Tejaswi S, Kumar M P and Rambabu A et. al 2016 Synthesis, structural, DNA binding and cleavage studies of Cu(II) complexes containing benzothiazole cored Schiff bases J. Fluoresc. 26 2151CrossRefGoogle Scholar
  50. 50.
    Pyle A M, Rehmann J P, Meshoyrer R, Kumar C V and Turro N J 1989 Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA J. Am. Chem. Soc. 111 3053Google Scholar
  51. 51.
    Mondal B, Sen B and Sarkar S et al. 2017 Synthesis, characterization, crystal structure and DNA-binding study of four cadmium(II) pyridine-carboxamide complexes J. Chem. Sci.  129 45CrossRefGoogle Scholar
  52. 52.
    Kumar M P, Vamsikrishna N, Ramesh G, Subhashini N J P, Jagadeesh B N and Shivaraj 2017 Cu(II) complexes with 4-amino-3, 5-dimethyl isoxazole and substituted aromatic aldehyde Schiff bases: synthesis, crystal structure antimicrobial activity, DNA binding and cleavage studies J. Coord. Chem. doi: 10.1080/00958972.2017.1292503
  53. 53.
    Selvarani V, Annaraj B, Neelakantan M A, Sundaramoorthy S and Velmurugan S 2013 Synthesis, characterization and crystal structures of copper(II) and nickel(II) complexes of propargyl arm containing N2O2 ligands: antimicrobial activity and DNA binding Polyhedron 54 74CrossRefGoogle Scholar
  54. 54.
    Chen J, Wang X, Chao Y, Zhu J H, Zhu Y G, Li Y Z, Xu Q and Guo Z J 2007 A Tri nuclear Copper(II) Complex of 2,4,6-Tris(di-2-pyridylamine)-1,3,5-triazine shows prominent DNA cleavage activity Inorg. Chem. 46 3306CrossRefGoogle Scholar
  55. 55.
    Chaires J B 1997 Energetics of drug-DNA interactions Biopolymer  44 201CrossRefGoogle Scholar
  56. 56.
    Shahabadi N, Fili M S and Shahlaei M 2015 Synthesis, characterization and comparative DNA interaction studies of new copper(II) and nickel(II) complexes containing mesalamine drug using molecular modeling and multispectroscopic methods J. Coord. Chem.  68 3667CrossRefGoogle Scholar
  57. 57.
    Gultneh Y, Khan A R, Blaise D, Chaudhry S, Ahvazi B, Marvey B B and Butcher R J 1999 Syntheses and structures of and catalysis of hydrolysis by Zn(II) complexes of chelating pyridyl donor ligands Inorg. Bio. Chem. 75 7Google Scholar
  58. 58.
    Armstrong W H and Lippard S J 1984 Reversible protonation of the Oxo bridge in a hemerythrin model compound. Synthesis, structure, and properties of (pHydroxo)bis(p-acetate)- bis[hydrotris(1-pyrazolyl) borato]diiron(III), [(HB(PZ)3)WOH) (02CCH3)2Fe(HB(pz)3)1\(^{+}\) J. Am. Chem. Soc.  106 4632CrossRefGoogle Scholar
  59. 59.
    Tweedy B G 1964 Plant extracts with metal ions as potential antimicrobial agents Phytopathology 55 910Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Narendrula Vamsikrishna
    • 1
  • Marri Pradeep Kumar
    • 1
  • Gali Ramesh
    • 1
  • Nirmala Ganji
    • 1
  • Sreenu Daravath
    • 1
  • Shivaraj
    • 1
  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations