Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 5, pp 561–571 | Cite as

Synthesis and structural studies of half-sandwich Cp* rhodium and Cp* iridium complexes featuring mono, bi and tetradentate nitrogen and oxygen donor ligands

  • Narasinga Rao Palepu
  • Werner Kaminsky
  • Mohan Rao Kollipara
Regular Article

Abstract

A series of Cp*Rh and Cp*Ir complexes of various nitrogen and oxygen donor ligands were synthesized and characterized. Mono, bi and tetradentate ligands were used to synthesize mononuclear and dinuclear complexes. Schiff base derivatives of picolinic hydrazine and 5-aminoquinoline were used in the synthesis of complexes 18. Among the ligands used for complexation, L1 and L2 act as bidentate, L3 as monodentate and L4 as tetradentate in forming the corresponding complexes. All the complexes were characterized by spectroscopic techniques and the structures of complexes 2, 3, 5 and 7 were unambiguously characterized by single crystal X-ray crystallography. Complexes 2 and 7 were found to have \({\uppi }\)-\({\uppi }\) stacking interactions and solvent to complex interactions, respectively. Metal-mediated deprotonation of N-H and monodentate binding of nitrogen are attributed to the formation of neutral complexes whereas ionic complexes are formed by (N,O) bonding.

Graphical Abstract

SYNOPSIS Half-sandwich Cp* rhodium and Cp* iridium complexes of Schiff base derivatives of picolinic hydrazine and 5-aminoquinoline were synthesized, characterized and their structures studied by single crystal X-ray analysis. Various binding modes of the complexes were unambiguously confirmed.

Keywords

Picolinic hydrazine fluorene 2-carbaldehyde rhodium iridium 

Notes

Acknowledgements

P N Rao thanks, UGC, New Delhi for providing a fellowship (SRF). We thank SAIF and DST-PURSE, SCXRD of NEHU for NMR and X-ray analysis data.

Supplementary material

12039_2017_1270_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (docx 21 KB)
12039_2017_1270_MOESM2_ESM.pdf (214 kb)
Supplementary material 2 (pdf 214 KB)
12039_2017_1270_MOESM3_ESM.pdf (125 kb)
Supplementary material 3 (pdf 125 KB)
12039_2017_1270_MOESM4_ESM.docx (315 kb)
Supplementary material 4 (docx 315 KB)
12039_2017_1270_MOESM5_ESM.pdf (137 kb)
Supplementary material 5 (pdf 136 KB)
12039_2017_1270_MOESM6_ESM.pdf (125 kb)
Supplementary material 6 (pdf 124 KB)
12039_2017_1270_MOESM7_ESM.docx (330 kb)
Supplementary material 7 (docx 329 KB)
12039_2017_1270_MOESM8_ESM.pdf (217 kb)
Supplementary material 8 (pdf 216 KB)
12039_2017_1270_MOESM9_ESM.pdf (126 kb)
Supplementary material 9 (pdf 125 KB)
12039_2017_1270_MOESM10_ESM.docx (30 kb)
Supplementary material 10 (docx 29 KB)
12039_2017_1270_MOESM11_ESM.pdf (267 kb)
Supplementary material 11 (pdf 266 KB)
12039_2017_1270_MOESM12_ESM.pdf (131 kb)
Supplementary material 12 (pdf 130 KB)

References

  1. 1.
    Wang C, Wang J L and Li 2012 W Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal–Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study J. Am. Chem. Soc. 134 19895CrossRefGoogle Scholar
  2. 2.
    Yang K R, Matula A J, Kwon G, Hong J, Sheehan S W, Thomsen J M, Brudvig G W, Crabtree R H, Tiede D M and Chen L X 2016 Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy J. Am. Chem. Soc. 138 5511CrossRefGoogle Scholar
  3. 3.
    Heiden Z M and Rauchfuss T B 2009 Proton-Assisted Activation of Dihydrogen: Mechanistic Aspects of Proton-Catalyzed Addition of \(\text{H}_{2}\) to Ru and Ir Amido Complexes J. Am. Chem. Soc.  131 3593Google Scholar
  4. 4.
    Kawahara R, Fujita K I and Yamaguchi R 2012 Cooperative Catalysis by Iridium Complexes with a Bipyridine Ligand: Versatile Dehydrogenative Oxidation of Alcohols and Reversible Dehydrogenation–Hydrogenation between 2-Propanol and Acetone Angew. Chem. Int. Ed. 51 12790CrossRefGoogle Scholar
  5. 5.
    Hintermair U, Campos J S, Brewster T P, Pratt L M, Schley N D and Crabtree R H 2013 Hydrogen-Transfer Catalysis with Cp*Ir\(^{{\rm III}}\) Complexes: The Influence of the Ancillary Ligands ACS Catalysis 4 99CrossRefGoogle Scholar
  6. 6.
    Jiang B, Feng Y and Ison E A 2008 Mechanistic Investigations of the Iridium(III)-Catalyzed Aerobic Oxidation of Primary and Secondary Alcohols J. Am. Chem. Soc. 130 14462CrossRefGoogle Scholar
  7. 7.
    McSkimming A, Bhadbhade M M and Colbran S B 2013 Bio-Inspired Catalytic Imine Reduction by Rhodium Complexes with Tethered Hantzsch Pyridinium Groups: Evidence for Direct Hydride Transfer from Dihydropyridine to Metal-Activated Substrate Angew. Chem. Int. Ed. 52 3411CrossRefGoogle Scholar
  8. 8.
    Schäfer S, Ott I, Gust R and Sheldrick W S 2007 Influence of the Polypyridyl (pp) Ligand Size on the DNA Binding Properties, Cytotoxicity and Cellular Uptake of Organoruthenium (II) Complexes of the Type [(\(\upeta ^{6}\text{-C }_{6}\text{ Me }_{6})\), n= 2] Eur. J. Inorg. Chem. 3034Google Scholar
  9. 9.
    Amouri H, Moussa J, Renfrew A K, Dyson P J, Rager M N and Chamoreau L M 2010 Discovery, Structure, and Anticancer Activity of an Iridium Complex of Diselenobenzoquinone Angew. Chem. Int. Ed. 49 7530CrossRefGoogle Scholar
  10. 10.
    Starha P, Habtemariam A, Romero-Canelon I, Clarkson G J and Sadler P J 2016 Hydrosulfide Adducts of Organo-Iridium Anticancer Complexes Inorg. Chem. 55 2324CrossRefGoogle Scholar
  11. 11.
    Gupta G, Das A, Ghate N B, Kim T, Ryu J Y, Lee J, Mandal N and Lee C Y 2016 Novel BODIPY-based Ru(II) and Ir(III) metallarectangles: cellular localization of compounds and their antiproliferative activities Chem. Commun.  52 4274CrossRefGoogle Scholar
  12. 12.
    Casini A, Edafe F, Erlandsson M, Gonsalvi L, Ciancetta A, Re N, Ienco A, Messori L, Peruzzini M and Dyson P J 2010 Rationalisation of the inhibition of structurally related organometallic compounds against the drug target cathepsin B by DFT. Dalton Trans. 39 5556CrossRefGoogle Scholar
  13. 13.
    Gupta G, Prasad K T, Das B, Yap G P and Rao K M 2009 Synthesis, spectral and molecular studies of half-sandwich arene ruthenium and Cp* Rh/Cp* Ir complexes containing bidentate PN and E–N ligands (E= S, Se) based on diphenyl (2-pyridyl) phosphine J. Organomet. Chem. 694 2618CrossRefGoogle Scholar
  14. 14.
    Rao A V, Prasad K T, Wang P and Rao K M 2012 Study of half-sandwich mono and dinuclear complexes of platinum group metals containing pyrazolyl pyridine analogues: Synthesis and spectral characterization J. Chem. Sci. 124 565CrossRefGoogle Scholar
  15. 15.
    Mahesh K, Forbes S, Mozharivskyj Y and Rao K M 2015 Half-sandwich \(\upeta ^{6}\)-arene ruthenium and Cp * rhodium/iridium compounds comprising with thioether ligands: Synthesis, spectral and molecular studies. J. Chem. Sci. 127 1135CrossRefGoogle Scholar
  16. 16.
    Nongbri S L, Das B and Rao K M 2012 Isolation and spectral studies of water-soluble \(\upeta ^{5}\)-cyclichydrocarbon rhodium and iridium complexes with pyridyl diketone analogues bonded through \(\upkappa ^{2}\text{-N }\cap \text{ O }, \upkappa ^{4}\)\(\text{ N }\cap \text{ O }\), and \(\upkappa ^{3}\text{-NCN }\) modes J. Coord. Chem. 65 875CrossRefGoogle Scholar
  17. 17.
    Almodares Z, Lucas S J, Crossley B D, Basri A M, Pask C M, Hebden A J, Phillips R Mand McGowan P C 2014 Rhodium, iridium, and ruthenium half-sandwich picolinamide complexes as anticancer agents Inorg. Chem. 53 727CrossRefGoogle Scholar
  18. 18.
    LucasS J, Lord R M, Basri A M, Allison S J, Phillips R M, Blacker A J and McGowan P C 2016 Increasing anti-cancer activity with longer tether lengths of group 9 Cp* complexes Dalton Trans. 45 6812CrossRefGoogle Scholar
  19. 19.
    Kar C, Samanta S, Goswami S, Ramesh A and Das G 2015 A single probe to sense Al (III) colorimetrically and Cd (II) by turn-on fluorescence in physiological conditions and live cells, corroborated by X-ray crystallographic and theoretical studies Dalton Trans. 44 4123CrossRefGoogle Scholar
  20. 20.
    Rollas S and Küçükgüzel S G 2007 Biological activities of hydrazone derivatives Molecules 12 1910CrossRefGoogle Scholar
  21. 21.
    Bernhardt P V, Chin P and Richardson D R 2001 Unprecedented oxidation of a biologically active arylhydrazone chelator catalysed by iron (III): Serendipitous identification of diacylhydrazine ligands with high iron chelation efficacy J. Biol. Inorg. Chem. 6 801CrossRefGoogle Scholar
  22. 22.
    Van Dijken D J, Kovaříček P, Ihrig S P and Hecht S 2015 Unprecedented oxidation of a biologically active aroylhydrazone chelator catalysed by iron (III): Serendipitous identification of diacylhydrazine ligands with high iron chelation efficacy J. Am. Chem. Soc. 137 14982CrossRefGoogle Scholar
  23. 23.
    Geldard J F and Lions F 1963 Tridentate chelate compounds. III Inorg. Chem. 2 270CrossRefGoogle Scholar
  24. 24.
    Pelagatti P, Bacchi A, Carcelli M, Costa M, Frühauf H W, Goubitz K, Pelizzi C, Triclistri M and Vrieze K 2002 Methyl-and Acetylpalladium (II) Complexes Containing a P, N, O Tridentate Hydrazone Ligand Eur. J. Inorg. Chem. 2 439CrossRefGoogle Scholar
  25. 25.
    Chandrasekhar V, Hossain S, Das S, Biswas S and Sutter J P 2013 Rhombus-shaped tetranuclear [Ln4] complexes [Ln= Dy (III) and Ho (III)]: Synthesis, structure, and SMM behaviour Inorg. Chem. 52 6346CrossRefGoogle Scholar
  26. 26.
    Pandiarajan D and Ramesh R 2012 Suzuki–Miyaura cross-coupling reaction of aryl bromides catalyzed by palladium (II) pyridoxal hydrazone complexes J. Organomet. Chem. 708 18CrossRefGoogle Scholar
  27. 27.
    Maurya M R, Khurana S, Schulzke C and Rehder D 2001 Dioxo-and Oxovanadium (V) Complexes of Biomimetic Hydrazone ONO Donor Ligands: Synthesis, Characterisation, and Reactivity Eur. J. Inorg. Chem3 779CrossRefGoogle Scholar
  28. 28.
    Bernhardt P V, Caldwell L M, Chaston T B, Chin P and Richardson D R 2003 Cytotoxic iron chelators: Characterization of the structure, solution chemistry and redox activity of ligands and iron complexes of the di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues J. Biol. Inorg. Chem. 8 866Google Scholar
  29. 29.
    Singh V, Singh S, SinghD, Singh P, Tiwari K, Mishra M and Butcher R 2013 Synthesis, spectral and single crystal X-ray diffraction studies on Co (II), Ni (II), Cu (II) and Zn (II) complexes with o-amino acetophenone benzoyl hydrazone Polyhedron 56 71CrossRefGoogle Scholar
  30. 30.
    Armarego W L and Chai C L L 2013 Purification of laboratory chemicals Purification of laboratory chemicals, Butterworth-Heinemann.Google Scholar
  31. 31.
    Chen S L, Liu Z, Xia J H, Li Y H 2012 Development of copper based drugs, radiopharmaceuticals and medical materials J. Coord. Chem. 65 2234CrossRefGoogle Scholar
  32. 32.
    White C, Yates A, Maitlis P and Heinekey D 2007(\(\upeta ^{5}\)-Pentamethylcyclopentadienyl) Rhodium and-Iridium Compounds Inorg. Synth. 29 228Google Scholar
  33. 33.
    Crysalis PRO, release 2012 Version 1.171.36.20. Agilent Technologies, Yarnton.Google Scholar
  34. 34.
    Sheldrick G M 2008 A short history of SHELX Acta Crystallogr. A 64 112CrossRefGoogle Scholar
  35. 35.
    Sheldrick G M 2015 Crystal structure refinement with SHELXL. Acta Crystallogr. C 71 3CrossRefGoogle Scholar
  36. 36.
    Farrugia L J 1997 ORTEP-3 for Windows -a version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Crystallogr. 30 565CrossRefGoogle Scholar
  37. 37.
    Bruno I, Cole J, Edgington P, Kessler M, F, Cabe P M, Pearson J and Taylor R 2002 New software for searching the Cambridge structural database and visualizing crystal structures Acta. Crystallogr. B 58 389Google Scholar
  38. 38.
    Rao P N, Nongbri S L, Premkumar J R, Verma A K, Bhattacharjee K, Joshi S R, Forbes S H, Mozharivskyj Y, Thounaojam R, Aguan K and Rao K M 2015 Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru (II), Rh (III) and Ir (III) as in vitro antitumor, antibacterial and fluorescence imaging agents J. Biol. Inorg. Chem. 20 619CrossRefGoogle Scholar
  39. 39.
    Rao P N, Premkumar J R, Verma A K, Bhattacharjee K, Joshi S R, Forbes S H, Mozharivskyj Y and Rao K M 2015 Synthesis, structural, DFT studies and antibacterial evaluation of Cp* rhodium and Cp* iridium complexes using hydrazide based dipyridyl ketone ligand Arabian J. Chem. 2015. doi: 10.1016/j.arabjc.2015.10.011
  40. 40.
    Chantzis A, Very T, Despax S, Issenhuth J T, Boeglin A, Hébraud P, Pfeffer M, Monari A and Assfeld X 2014 UV–vis absorption spectrum of a novel Ru (II) complex intercalated in DNA:[Ru (2, \(2^{\prime }\)-bipy)(dppz)(2, \(2^{\prime }\)-ArPy)]\(^{+}\) J. Mol. Mod. 20 1CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Centre for Advanced Studies in ChemistryNorth-Eastern Hill UniversityShillongIndia
  2. 2.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations