Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis \((\mathbf{MPDS}^{\mathbf{TB}})\)

Abstract

Molecular Property Diagnostic Suite (\(\text {MPDS}^{\mathrm{TB}}\)) is a web tool (http://mpds.osdd.net) designed to assist the in silico drug discovery attempts towards Mycobacterium tuberculosis (Mtb). \(\text {MPDS}^{\mathrm{TB}}\) tool has nine modules which are classified into data library (1–3), data processing (4–5) and data analysis (6–9). Module 1 is a repository of literature and related information available on the Mtb. Module 2 deals with the protein target analysis of the chosen disease area. Module 3 is the compound library consisting of 110.31 million unique molecules generated from public domain databases and custom designed search tools. Module 4 contains tools for chemical file format conversions and 2D to 3D coordinate conversions. Module 5 helps in calculating the molecular descriptors. Module 6 specifically handles QSAR model development tools using descriptors generated in the Module 5. Module 7 integrates the AutoDock Vina algorithm for docking, while module 8 provides screening filters. Module 9 provides the necessary visualization tools for both small and large molecules. The workflow-based open source web portal, \(\text {MPDS}^{\mathrm{TB}}\) 1.0.1 can be a potential enabler for scientists engaged in drug discovery in general and in anti-TB research in particular.

Graphical Abstract

SYNOPSIS: A web-based \(\text {MPDS}^{\mathrm{TB}}\) Galaxy tool is developed for assessing therapeutic potential of molecules. \(\text {MPDS}^{\mathrm{TB}}\) is categorized into Data Library, Data Processing and Data Analysis. It can be a potential enabler for scientists engaged in drug discovery in general and in anti-TB research in particular.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Searls D B 2005 Data integration: Challenges for drug discovery Nat. Rev. Drug Discovery 4 45

    CAS  Article  Google Scholar 

  2. 2.

    Nwaka S, Ramirez B, Brun R, Maes L, Douglas F and Ridley R 2009 Advancing drug innovation for neglected diseases-criteria for lead progression PLoS Negl. Trop. Dis. 3 e440

    Article  Google Scholar 

  3. 3.

    Sachs J D 2001 A new global commitment to disease control in Africa Nat. Med. 7 521

    CAS  Article  Google Scholar 

  4. 4.

    Jagarlapudi S A and Kishan K V 2009 Database systems for knowledge-based discovery Methods Mol. Biol. 575 159

    CAS  Article  Google Scholar 

  5. 5.

    Winter M J, Owen S F, Murray-Smith R, Panter G H, Hetheridge M J and Kinter L B 2010 Using data from drug discovery and development to aid the aquatic environmental risk assessment of human pharmaceuticals: Concepts, considerations, and challenges Integr. Environ. Assess Manage. 6 38

    CAS  Google Scholar 

  6. 6.

    Lushington G H, Dong Y and Theertham B 2013 Chemical informatics and the drug discovery knowledge pyramid Comb. Chem. High Throughput Screening 16 764

    CAS  Article  Google Scholar 

  7. 7.

    Bajorath J 2017 Compound Data Mining for Drug Discovery Methods Mol. Biol. 1526 247

    Article  Google Scholar 

  8. 8.

    Boran A D and Iyengar R 2010 Systems approaches to polypharmacology and drug discovery Curr. Opin. Drug Discovery Dev. 13 297

    CAS  Google Scholar 

  9. 9.

    Badrinarayan P and Sastry G N 2011 Virtual high throughput screening in new lead identification Comb. Chem. High Throughput Screening 14 840

    CAS  Article  Google Scholar 

  10. 10.

    Reddy A S, Pati S P, Kumar P P, Pradeep H N and Sastry G N 2007 Virtual screening in drug discovery – a computational perspective Curr. Protein Pept. Sci. 8 329

    CAS  Article  Google Scholar 

  11. 11.

    Collins P Y, Patel V, Joestl S S, March D, Insel T R, Daar A S; Scientific Advisory Board and the Executive Committee of the Grand Challenges on Global Mental Health, Anderson W, Dhansay M A, Phillips A, Shurin S, Walport M, Ewart W, Savill S J, Bordin I A, Costello E J, Durkin M, Fairburn C, Glass R I, Hall W, Huang Y, Hyman S E, Jamison K, Kaaya S, Kapur S, Kleinman A, Ogunniyi A, Otero-Ojeda A, Poo M M, Ravindranath V, Sahakian B J, Saxena S, Singer P A and Stein D J 2011 Grand challenges in global mental health Nature 475 27

  12. 12.

    Varmus H, Klausner R, Zerhouni E, Acharya T, Daar A S and Singer P A 2003 Public health. Grand Challenges in Global Health Science 302 398

    CAS  Article  Google Scholar 

  13. 13.

    Paul S M, Mytelka D S, Dunwiddie C T, Persinger C C, Munos B H, Lindborg S R and Schacht A L 2010 How to improve R&D productivity: The pharmaceutical industry’s grand challenge Nat. Rev. Drug Discov. 9 203

    CAS  Google Scholar 

  14. 14.

    Dubois D J 2010 Grand Challenges in Pharmacoeconomics and Health Outcomes Front. Pharmacol. 1 7

    Article  Google Scholar 

  15. 15.

    Yildirim O, Gottwald M, Schüler P and Michel MC M 2016 Opportunities and Challenges for Drug Development: Public–Private Partnerships, Adaptive Designs and Big Data Front. Pharmacol. 7 461

    Article  Google Scholar 

  16. 16.

    Gostin L O and Mok E A 2009 Grand challenges in global health governance Br. Med. Bull. 90 78

    Article  Google Scholar 

  17. 17.

    Pai M, Daftary A and Satyanarayana S 2016 TB control: Challenges and opportunities for India Trans. R. Soc. Trop. Med. Hyg. 110 158

    Article  Google Scholar 

  18. 18.

    Wells T N, Willis P, Burrows J N and Hooft V H R 2016 Open data in drug discovery and development: Lessons from malaria Nat. Rev. Drug Discov. 15 661

    CAS  Article  Google Scholar 

  19. 19.

    Van Voorhis W C, Adams J H, Adelfio R, Ahyong V, Akabas M H, Alano P, Alday A, Alemán Resto Y, Alsibaee A, Alzualde A, Andrews K T, Avery S V, Avery V M, Ayong L, Baker M, Baker S, Ben Mamoun C, Bhatia S, Bickle Q, Bounaadja L, Bowling T, Bosch J, Boucher L E, Boyom F F, Brea J, Brennan M, Burton A, Caffrey C R, Camarda G, Carrasquilla M, Carter D, Belen Cassera M, Chih-Chien Cheng K, Chindaudomsate W, Chubb A, Colon B L, Colón-López D D, Corbett Y, Crowther G J, Cowan N, D’Alessandro S, Le Dang N, Delves M, DeRisi J L, Du A Y, Duffy S, Abd El-Salam El-Sayed S, Ferdig M T, Fernández Robledo J A, Fidock D A, Florent I, Fokou P V, Galstian A, Gamo F J, Gokool S, Gold B, Golub T, Goldgof G M, Guha R, Guiguemde W A, Gural N, Guy R K, Hansen M A, Hanson K K, Hemphill A, Hooft van Huijsduijnen R, Horii T, Horrocks P, Hughes T B, Huston C, Igarashi I, Ingram-Sieber K, Itoe M A, Jadhav A, Naranuntarat Jensen A, Jensen L T, Jiang R H, Kaiser A, Keiser J, Ketas T, Kicka S, Kim S, Kirk K, Kumar V P, Kyle D E, Lafuente M J, Landfear S, Lee N, Lee S, Lehane A M, Li F, Little D, Liu L, Llinás M, Loza M I, Lubar A, Lucantoni L, Lucet I, Maes L, Mancama D, Mansour N R, March S, McGowan S, Medina Vera I, Meister S, Mercer L, Mestres J, Mfopa A N, Misra R N, Moon S, Moore J P, Morais Rodrigues da Costa F, Müller J, Muriana A, Nakazawa Hewitt S, Nare B, Nathan C, Narraidoo N, Nawaratna S, Ojo K K, Ortiz D, Panic G, Papadatos G, Parapini S, Patra K, Pham N, Prats S, Plouffe D M, Poulsen S A, Pradhan A, Quevedo C, Quinn R J, Rice C A, Abdo Rizk M, Ruecker A, St Onge R, Salgado Ferreira R, Samra J, Robinett N G, Schlecht U, Schmitt M, Silva Villela F, Silvestrini F, Sinden R, Smith D A, Soldati T, Spitzmüller A, Stamm S M, Sullivan D J, Sullivan W, Suresh S, Suzuki B M, Suzuki Y, Swamidass S J, Taramelli D, Tchokouaha L R, Theron A, Thomas D, Tonissen K F, Townson S, Tripathi A K, Trofimov V, Udenze K O, Ullah I, Vallieres C, Vigil E, Vinetz J M, Voong Vinh P, Vu H, Watanabe N A, Weatherby K, White P M, Wilks A F, Winzeler E A, Wojcik E, Wree M, Wu W, Yokoyama N, Zollo P H, Abla N, Blasco B, Burrows J, Laleu B, Leroy D, Spangenberg T, Wells T and Willis P A 2016 Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond PLoS Pathog. 28 e1005763

    Article  Google Scholar 

  20. 20.

    Williamson A E, Ylioja P M, Robertson M N, Antonova-Koch Y, Avery V, Baell J B, Batchu H, Batra S, Burrows J N, Bhattacharyya S, Calderon F, Charman S A, Clark J, Crespo B, Dean M, Debbert S L, Delves M, Dennis A S, Deroose F, Duffy S, Fletcher S, Giaever G, Hallyburton I, Gamo F J, Gebbia M, Guy R K, Hungerford Z, Kirk K, Lafuente-Monasterio M J, Lee A, Meister S, Nislow C, Overington J P, Papadatos G, Patiny L, Pham J, Ralph S A, Ruecker A, Ryan E, Southan C, Srivastava K, Swain C, Tarnowski M J, Thomson P, Turner P, Wallace I M, Wells T N, White K, White L, Willis P, Winzeler E A, Wittlin S and Todd M H 2016 Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles ACS Cent. Sci. 2 687

    CAS  Article  Google Scholar 

  21. 21.

    Rottmann M, McNamara C, Yeung B K, Lee MC, Zou B, Russell B, Seitz P, Plouffe D M, Dharia N V, Tan J, Cohen S B, Spencer K R, González-Páez GE, Lakshminarayana S B, Goh A, Suwanarusk R, Jegla T, Schmitt E K, Beck H P, Brun R, Nosten F, Renia L, Dartois V, Keller T H, Fidock D A, Winzeler E A and Diagana T T 2010 Spiroindolones, a potent compound class for the treatment of malaria Science 329 1175

    CAS  Article  Google Scholar 

  22. 22.

    Meister S, Plouffe D M, Kuhen K L, Bonamy G M, Wu T, Barnes S W, Bopp S E, Borboa R, Bright A T, Che J, Cohen S, Dharia N V, Gagaring K, Gettayacamin M, Gordon P, Groessl T, Kato N, Lee M C, McNamara C W, Fidock D A, Nagle A, Nam T G, Richmond W, Roland J, Rottmann M, Zhou B, Froissard P, Glynne R J, Mazier D, Sattabongkot J, Schultz P G, Tuntland T, Walker J R, Zhou Y, Chatterjee A, Diagana T T and Winzeler E A 2011 Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery Science 334 1372

    CAS  Article  Google Scholar 

  23. 23.

    Gamo F J, Sanz L M, Vidal J, de Cozar C, Alvarez E, Lavandera J L, Vanderwall D E, Green D V, Kumar V, Hasan S, Brown J R, Peishoff C E, Cardon L R and Garcia-Bustos J F 2010 Thousands of chemical starting points for antimalarial lead identification Nature 465 305

  24. 24.

    Guiguemde W A, Shelat A A, Bouck D, Duffy S, Crowther G J, Davis P H, Smithson D C, Connelly M, Clark J, Zhu F, Jiménez-Díaz M B, Martinez M S, Wilson E B, Tripathi A K, Gut J, Sharlow E R, Bathurst I, El Mazouni F, Fowble J W, Forquer I, McGinley P L, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal P J, Derisi J L, Sullivan D J, Lazo J S, Roos D S, Riscoe M K, Phillips M A, Rathod P K, Van Voorhis W C, Avery V M and Guy R K 2010 Chemical genetics of Plasmodium falciparum Nature 465 311

    CAS  Article  Google Scholar 

  25. 25.

    Wells T N 2010 Microbiology. Is the tide turning for new malaria medicines? Science 329 1153

    CAS  Article  Google Scholar 

  26. 26.

    Rees S 2015 The promise of open innovation in drug discovery: An industry perspective Future Med. Chem. 7 1835

    CAS  Article  Google Scholar 

  27. 27.

    Allarakhia M 2014 The successes and challenges of open-source biopharmaceutical innovation Expert Opin. Drug Discovery 9 459

    CAS  Article  Google Scholar 

  28. 28.

    Global Tuberculosis report http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1 (accessed on 31\(^{{\rm st}}\) January 2017)

  29. 29.

    Guidelines for treatment of tuberculosis, fourth edition http://apps.who.int/iris/bitstream/10665/44165/1/9789241547833_eng.pdf?ua=1&ua=1 (accessed on 31\(^{{\rm st}}\) December 2016)

  30. 30.

    Esmail H, Barry C E, Young D B and Wilkinson R J 2014 The ongoing challenge of latent tuberculosisPhilos. Trans. R. Soc. London, Ser. B 369 20130437

    CAS  Article  Google Scholar 

  31. 31.

    Davis C E, Carpenter J L, McAllister C K, Matthews J, Bush B A and Ognibene A J 1985 Tuberculosis. Cause of death in antibiotic era Chest 88 726

    Article  Google Scholar 

  32. 32.

    Frieden T R, Sterling T R, Munsiff S S, Watt C J and Dye C 2003 Tuberculosis Lancet 362 887

    Article  Google Scholar 

  33. 33.

    Dye C, Scheele S, Dolin P, Pathania V and Raviglione M C 1999 Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project JAMA 282 677

    CAS  Article  Google Scholar 

  34. 34.

    Norton B L and Holland D P 2012 Current management options for latent tuberculosis: a review Infect. Drug Resist. 5 163

    CAS  Google Scholar 

  35. 35.

    Johnson R, Streicher E M, Louw G E, Warren R M, van Helden P D and Victor T C 2006 Drug resistance in Mycobacterium tuberculosis Curr. Issues Mol. Biol. 8 97

    CAS  Google Scholar 

  36. 36.

    Kremer L S and Besra G S 2002 Current status and future development of antitubercular chemotherapy Expert Opin. Invest. Drugs 11 1033

    CAS  Article  Google Scholar 

  37. 37.

    Chan E D and Iseman M D 2008 Multidrug-resistant and extensively drug-resistant tuberculosis: a review Curr. Opin. Infect. Diseases 21 587

    CAS  Article  Google Scholar 

  38. 38.

    Daley C L and Caminero J A 2013 Management of multidrug resistant tuberculosis Semin. Respir. Crit. Care Med. 34 44

    Article  Google Scholar 

  39. 39.

    Choudhury C, Priyakumar U D and Sastry G N 2014 Molecular dynamics investigation of the active site dynamics of mycobacterial cyclopropane synthase during various stages of the cyclopropanation process J. Struct. Biol. 187 38

    CAS  Article  Google Scholar 

  40. 40.

    Choudhury C, Priyakumar U D and Sastry G N 2015 Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase J. Chem. Inf. Model. 55 848

    CAS  Article  Google Scholar 

  41. 41.

    Choudhury C, Priyakumar U D and Sastry G N 2016 Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors J. Chem. Sci. 128 719

    CAS  Article  Google Scholar 

  42. 42.

    Janardhan S, Ram Vivek M and Sastry G N 2016 Modeling the permeability of drug-like molecules through the cell wall of Mycobacterium tuberculosis: an analogue based approach Mol. Biosyst. 12 3377

    CAS  Article  Google Scholar 

  43. 43.

    Reddy A S, Amarnath H S, Bapi R S, Sastry G M and Sastry G N 2008 Protein ligand interaction database (PLID) Comput. Biol. Chem. 32 387

    CAS  Article  Google Scholar 

  44. 44.

    Srivastava H K, Choudhury C and Sastry G N 2012 The efficacy of conceptual DFT descriptors and docking scores on the QSAR models of HIV protease inhibitors Med. Chem. 8 811

    CAS  Article  Google Scholar 

  45. 45.

    Dobson C M 2004 Chemical space and biology Nature 432 824

    CAS  Article  Google Scholar 

  46. 46.

    Lipinski C and Hopkins A 2004 Navigating chemical space for biology and medicine Nature 432 855

    CAS  Article  Google Scholar 

  47. 47.

    Barker A, Kettle J G, Nowak T and Pease J E 2013 Expanding medicinal chemistry space Drug Discovery Today 18 298

    CAS  Article  Google Scholar 

  48. 48.

    Reymond J L and Awale M 2012 Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database ACS Chem. Neurosci. 3 649

    CAS  Article  Google Scholar 

  49. 49.

    Oprea T I and Gottfries J 2001 Chemography: The art of navigating in chemical space J. Com. Chem. 3 157

    CAS  Article  Google Scholar 

  50. 50.

    Xu J and Stevenson J 2000 Drug-like index: A new approach to measure drug-like compounds and their diversity J. Chem. Inf. Comput. Sci. 40 1177

    CAS  Article  Google Scholar 

  51. 51.

    Irwin J J and Shoichet B K 2005 ZINC-a free database of commercially available compounds for virtual screening J. Chem. Inf. Model. 45 177

    CAS  Article  Google Scholar 

  52. 52.

    Bolton E E, Wang Y, Thiessen P A and Bryant S H 2008 PubChem: Integrated platform of small molecules and biological activities Annu. Rep. Comput. Chem. 4 217

    CAS  Article  Google Scholar 

  53. 53.

    Wang Y, Xiao J, Suzek T O, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S and Shoemaker B A 2012 PubChem’s BioAssay database Nucleic Acids Res. 40 D400

    CAS  Article  Google Scholar 

  54. 54.

    Vasilevich N I, Kombarov R V, Genis D V and Kirpichenok M A 2012 Lessons from natural products chemistry can offer novel approaches for synthetic chemistry in drug discovery J. Med. Chem. 55 7003

    CAS  Article  Google Scholar 

  55. 55.

    Milne G W and Miller J 1986 The NCI drug information system. 1. System overview J. Chem. Inf. Comput. Sci. 26 154

    CAS  Article  Google Scholar 

  56. 56.

    Wishart D S, Knox C, Guo A C, Shrivastava S, Hassanali M, Stothard P, Chang Z and Woolsey J 2006 DrugBank: A comprehensive resource for in silico drug discovery and exploration Nucleic Acids Res. 34 D668

    CAS  Article  Google Scholar 

  57. 57.

    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M and Tanabe M 2014 Data, information, knowledge and principle: Back to metabolism in KEGG Nucleic Acids Res. 42 D199

    CAS  Article  Google Scholar 

  58. 58.

    Pence H E and Williams A 2010 ChemSpider: An online chemical information resource J. Chem. Educ. 87 1123

    CAS  Article  Google Scholar 

  59. 59.

    Chen C Y 2011 TCM Database@ Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico PLoS One 6 e15939

    CAS  Article  Google Scholar 

  60. 60.

    Kiss R, Sandor M and Szalai F A 2012 http://Mcule.com: A public web service for drug discovery J. Cheminf. 4 P17

  61. 61.

    Olah M, Rad R, Ostopovici L, Bora A, Hadaruga N, Hadaruga D, Moldovan R, Fulias A, Mractc M and Oprea T I 2008 In Small Molecules to Systems Biology and Drug Design -WOMBAT and WOMBAT-PK: Bioactivity Databases for Lead and Drug Discovery Chemical Biology S L Schreiber, T M Kapoor and G Wess (Eds.) (Weinheim: Wiley-VCH Verlag GmbH) Vol. 1–3 p. 760

  62. 62.

    Anna G, Louisa J B, Bento A P and Jon C 2012 ChEMBL: A large-scale bioactivity database for drug discovery Nucleic Acids Res. 40 D1100

    Article  Google Scholar 

  63. 63.

    Jiang C, Jin X, Dong Y and Chen M 2016 Kekule.js: An Open Source JavaScript Chemoinformatics Toolkit J. Chem. Inf. Model. 56 1132

    CAS  Article  Google Scholar 

  64. 64.

    Wojcikowski M, Zielenkiewicz P and Siedlecki P 2015 Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field J. Cheminf. 7 26

    Article  Google Scholar 

  65. 65.

    Kuhn T, Willighagen E L, Zielesny A and Steinbeck C 2010 CDK-Taverna: An open workflow environment for chemoinformatics BMC Bioinformatics 11 159

    Article  Google Scholar 

  66. 66.

    Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E and Willighagen E 2003 The Chemistry Development Kit (CDK): An open-source Java library for Chemo- and Bioinformatics J. Chem. Inf. Comput. Sci. 43 493

    CAS  Article  Google Scholar 

  67. 67.

    Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva H A, Balcazar V M P, Sufi S and Goble C 2013 The Taverna workflow suite: Designing and executing workflows of Web Services on the desktop, web or in the cloud Nucleic Acids Res. 41 W557

  68. 68.

    Beisken S, Meinl T, Wiswedel B, de Figueiredo L F, Berthold M and Steinbeck C 2013 KNIME-CDK: Workflow-driven cheminformatics BMC Bioinf. 14 257

    Article  Google Scholar 

  69. 69.

    Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A and Taylor J 2010 Galaxy: a web-based genome analysis tool for experimentalists Curr. Protoc. Mol. Biol. Chapter 19 Unit 19.10.1-21

  70. 70.

    Afgan E, Baker D, Beek M V D, Blankenberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Gruning B, Guerler A, Jackson J H, Kuster G V, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A and Goecks J 2016 The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update Nucleic Acids. Res. 44 W3

    Article  Google Scholar 

  71. 71.

    Blankenberg D, Kuster G V, Bouvier E, Baker D, Afgan E, Stoler N, Galaxy Team, Taylor J and Nekrutenko A 2014 Dissemination of scientific software with Galaxy ToolShed Genome Biol. 15 403

    Article  Google Scholar 

  72. 72.

    Publicly Accessible Galaxy Servers https://wiki.galaxyproject.org/PublicGalaxyServers (accessed on 31\(^{\rm st}\) December 2016)

  73. 73.

    Hildebrandt A K, Stockel D, Fischer N M, de la Garza L, Kruger J, Nickels S, Rottig M, Scharfe C, Schumann M, Thiel P, Lenhof H P, Kohlbacher O and Hildebrandt A 2015 ballaxy: web services for structural bioinformatics Bioinformatics 31 121

    CAS  Article  Google Scholar 

  74. 74.

    O’Boyle N M, Banck M, James C A, Morley C, Vandermeersch T and Hutchison G R 2011 Open Babel: An open chemical toolbox J. Cheminf. 3 33

    Article  Google Scholar 

  75. 75.

    Landrum G RDKit: Open-Source Cheminformatics http://www.rdkit.org (accessed on 31\(^{\rm st}\) December 2016)

  76. 76.

    Ertl P and Rohde B 2012 The Molecule Cloud - compact visualization of large collections of molecules J. Cheminf. 4 12

    CAS  Article  Google Scholar 

  77. 77.

    Peironcely J E, Cherto M R, Fichera D, Reijmers T, Coulier L, Faulon J L and Hankemeier T 2012 OMG: Open Molecule Generator J. Cheminf. 4 21

  78. 78.

    Vainio M J and Johnson M S 2005 McQSAR: a multiconformational quantitative structure-activity relationship engine driven by genetic algorithms J. Chem. Inf. Model. 45 1953

    CAS  Article  Google Scholar 

  79. 79.

    Joachims T 1999 Advances in Kernel Methods- Making Large-Scale SVM Learning Practical B Scholkopf, C Burges and A Smola (Eds.) (Cambridge: MIT-Press) p. 169

  80. 80.

    Moriarty N W, Grosse-Kunstleve R W and Adams P D 2009 electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation Acta Crystallogr., D: Biol. Crystallogr. 65 1074

  81. 81.

    Dewar M J S, Zoebisch E G, Healy E F and Stewart J J P 1985 Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model J. Am. Chem. Soc. 107 3902

    CAS  Article  Google Scholar 

  82. 82.

    Trott O and Olson A J 2010 AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading J. Comput. Chem. 31 455

  83. 83.

    Drug Likeness Tool (DruLiTo) http://www.niper.ac.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html (accessed on 31\(^{\rm st}\) December 2016)

  84. 84.

    Lipinski C A, Lombardo F, Dominy B W and Feeney P J 2001 Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Delivery Rev. 46 3

  85. 85.

    Oprea T I 2000 Property distribution of drug-related chemical databases J. Comput. -Aided. Mol. Des. 14 251

    CAS  Article  Google Scholar 

  86. 86.

    Ghose A K, Viswanadhan V N and Wendoloski J J 1999 A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases J. Comb. Chem. 1 55

    CAS  Article  Google Scholar 

  87. 87.

    Bickerton G R, Paolini G V, Besnard J, Muresan S and Hopkins A L 2012 Quantifying the chemical beauty of drugs Nat. Chem. 4 90

    CAS  Article  Google Scholar 

  88. 88.

    Veber D F, Johnson S R, Cheng H Y, Smith B R, Ward K W and Kopple K D 2002 Molecular properties that influence the oral bioavailability of drug candidates J. Med. Chem. 45 2615

    CAS  Article  Google Scholar 

  89. 89.

    Yap C W 2011 PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints J. Comput. Chem. 32 1466

  90. 90.

    Jensen C and Scacchi W 2005 Collaboration, leadership, control, and conflict negotiation and the netbeans.org open source software development community IEEE 196b

Download references

Acknowledgements

We are thankful to OSDD, CSIR and Sir Dorabji TATA trust for providing TCOF fellowships to some of the authors in the study. CSIR \(12^{\mathrm{th}}\) five year program GENESIS (BSC 0121), Department of Science and Technology (New Delhi) and Department of Biotechnology (New Delhi) are also thanked for funding. Code development has taken about 5 years of time starting from 2012 and has witnessed 5 Workshops in IICT, IMTECH, OSDD centre, Bangalore, and NCL. Besides there were several exchange of students between various institutes. We thank CSIR OSDD consortium, NIPER, JNU, and BBAU for providing support. GNS thank J C Bose fellowship of DST. This manuscript is dedicated to the memory of Dr. Anirban Banerji and Dr. Pankaj Narang who have provided a lot of energy and enthusiasm during the kick-start stages of the MPDS teamwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G Narahari Sastry.

Additional information

Deceased: ANIRBAN BANERJI and PANKAJ NARANG.

Principal investigator: G NARAHARI SASTRY

Co-principal investigators: P ANSHU BHARDWAJ, PRASAD V BHARATAM, ANDREW M LYNN, DEVESH KUMAR, GAJENDRA P S RAGHAVA, M KARTHIKEYAN, SUBRAMANIAN VENKATESAN

Core developers: ANAMIKA SINGH GAUR, ANSHU BHARDWAJ, ARUN SHARMA, LIJO JOHN, M RAM VIVEK, NEHA TRIPATHI, PRASAD V BHARATAM, RAKESH KUMAR, SRIDHARA JANARDHAN, G NARAHARI SASTRY

Co-developers: ABHAYSINH MORI, ANIRBAN BANERJI, ANMOL J HEMROM, ANURAG PASSI, APARNA SINGH, ASHEESH KUMAR, CHARUVAKA MUVVA, CHINMAI MADHURI, CHINMAYEE CHOUDHURY, D ARUN KUMAR, DEEPAK PANDIT, DEEPAK R BHARTI, ER AZHAGIYA SINGAM, HARI SAILAJA, HARISH JANGRA, KAAMINI RAITHATHA, KARUNAKAR TANNEERU, KUMARDEEP CHAUDHARY, M PRASANTHI, NANDAN KUMAR, N YEDUKONDALU, NEERAJ K RAJPUT, P SRI SARANYA, PANKAJ NARANG, PRASUN DUTTA, R VENKATA KRISHNAN, REETU SHARMA, R SRINITHI, RUCHI MISHRA, S HEMASRI, SANDEEP SINGH, SURESH KUMAR, UCA JALEEL, VIJAY KHEDKAR, YOGESH JOSHI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaur, A.S., Bhardwaj, A., Sharma, A. et al. Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis \((\mathbf{MPDS}^{\mathbf{TB}})\) . J Chem Sci 129, 515–531 (2017). https://doi.org/10.1007/s12039-017-1268-4

Download citation

Keywords

  • Tuberculosis
  • chemoinformatics
  • open science
  • neglected diseases
  • drug discovery portal
  • web-based technology