Journal of Chemical Sciences

, Volume 129, Issue 5, pp 573–578 | Cite as

Polyoxometalate-based 3D porous framework with inorganic molecular nanocage units

  • Shaobin Li
  • Zihao Li
  • Jingyu Zhang
  • Zhengnan Su
  • Shiying Qi
  • Shihong Guo
  • Xiaoguo Tan
Regular Article


A new polyoxometalate-based 3D porous framework with inorganic molecular nanocage unit, (\(\hbox {H}_{2}\hbox {dap})[\hbox {K}(\hbox {H}_{2}\hbox {O})_{2}\) (\(\hbox {V}_{10}\hbox {O}_{28})_{0.5}\)] (1) (dap \(=\) 1,2-diaminopropane), has been synthesized and characterized by routine methods. In 1, the decavanadate clusters, as twelve-dentate connectors, link eight potassium ions to form a 3D porous framework with inorganic molecular cage units. There are two dap ligand molecules occupying in each inorganic molecular cage. Furthermore, the electrochemical properties of 1 were studied, which indicate that 1 has a good electrocatalytic activity towards reduction of iodate (\(\hbox {IO}_{3}^{-})\) ascribed to the V-center.

Graphical Abstract

A new polyoxometalate-based 3D porous inorganic nanocage framework has been synthesized. The electrochemical properties indicate that it has a good electrocatalytic activity towards the reduction of iodate.


Polyoxometalates inorganic nanocage 3d porous framework electrochemistry electrocatalysis 



This work was financially supported by the NSF of China (No. 21603113), the NSF of Heilongjiang Province (No. QC2016014) and Undergraduate Training Programs for Innovation and Entrepreneurship of Qiqihar University (No. 201610221088).

Supplementary material

12039_2017_1265_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (doc 1084 KB)
12039_2017_1265_MOESM2_ESM.doc (75 kb)
Supplementary material 2 (doc 75 KB)
12039_2017_1265_MOESM3_ESM.pdf (209 kb)
Supplementary material 3 (pdf 208 KB)


  1. 1.
    Koblenz T S, Wassenaar J and Reek J N H 2008 Reactivity within a confined self-assembled nanospace Chem. Soc. Rev. 37 247CrossRefGoogle Scholar
  2. 2.
    Sava D F, Kravtsov V C, Eckert J, Eubank J F, Nouar F and Eddaoudi M 2009 Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies J. Am. Soc. Chem. 131 10394CrossRefGoogle Scholar
  3. 3.
    Clever G H, Tashiro S and Shionoya M 2009 Inclusion of anionic guests inside a molecular cage with palladium(II) centers as electrostatic anchors Angew. Chem. Int. Ed. 48 7010CrossRefGoogle Scholar
  4. 4.
    Murase T, Nishijima Y and Fujita M 2012 Cage-catalyzed Knoevenagel condensation under neutral conditions in water J. Am. Soc. Chem. 134 162CrossRefGoogle Scholar
  5. 5.
    Jin Y H, Wang Q, Taynton P and Zhang W 2014 Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers Acc. Chem. Res. 47 1575CrossRefGoogle Scholar
  6. 6.
    Tu B B, Pang Q Q, Ning E L, Yan W Q, Qi Y, Wu D F and Li Q W 2015 Heterogeneity within a mesoporous metal-organic framework with three distinct metal-containing building units J. Am. Soc. Chem. 137 13456CrossRefGoogle Scholar
  7. 7.
    Qiu X, Zhong W, Bai C H and Li Y W 2016 Encapsulation of a metal-organic polyhedral in the pores of a metal-organic framework J. Am. Soc. Chem. 138 1138CrossRefGoogle Scholar
  8. 8.
    Du D Y, Qin J S, Li S L, Su Z M and Lan Y Q 2014 Recent advances in porous polyoxometalate-based metal-organic framework materials Chem. Soc. Rev. 43 4615CrossRefGoogle Scholar
  9. 9.
    Fang X K, Kögerler P, Isaacs L, Uchida S and Mizuno N 2009 Cucurbit[n]uril-polyoxoanion hybrids J. Am. Chem. Soc. 131 432CrossRefGoogle Scholar
  10. 10.
    Han X B, Li Y G, Zhang Z M, Tan H Q, Lu Y and Wang E B 2015 Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts J. Am. Chem. Soc. 137 5486CrossRefGoogle Scholar
  11. 11.
    Dolbecq A, Dumas E, Mayer C R and Mialane P 2010 Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications Chem. Rev. 110 6009CrossRefGoogle Scholar
  12. 12.
    Long D L, Burkholder E and Cronin L 2007 Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices Chem. Soc. Rev. 36 105CrossRefGoogle Scholar
  13. 13.
    Wang S S and Yang G Y 2015 Recent advances in polyoxometalate-catalyzed reactions Chem. Rev. 115 4893Google Scholar
  14. 14.
    Sun M, Zhang J Z, Putaj P, Caps V, Lefebver F, Pelletier J and Basset J M 2014 Catalytic Oxidation of Light Alkanes (C\(_1\)–C\(_4\)) by Heteropoly Compounds Chem. Rev. 114 981CrossRefGoogle Scholar
  15. 15.
    Yin Q S, Tan J M, Besson C, Geletii Y V, Musaev D G, Kuznetsov A E, Luo Z, Hardcastle K I and Hill C L 2010 A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals Science 328 342CrossRefGoogle Scholar
  16. 16.
    Hill C L 1998 Introduction: Polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems Chem. Rev. 98 1Google Scholar
  17. 17.
    Kamata K, Nakagawa Y, Yamaguchi K and Mizuno N 2008 1,3-Dipolar cycloaddition of organic azides to alkynes by a dicopper-substituted silicotungstate J. Am. Chem. Soc. 130 15304CrossRefGoogle Scholar
  18. 18.
    Kuang X F, Wu X Y, Yu R M, Donahue J P, Huang J S and Lu C Z 2010 Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages Nat. Chem. 2 461Google Scholar
  19. 19.
    Zheng S T, Zhang J, Li X X, Fang W H and Yang G Y 2010 Cubic polyoxometalate-organic molecular cage J. Am. Chem. Soc. 132 15102CrossRefGoogle Scholar
  20. 20.
    Wang X L, Li Y G, Lu Y, Fu H, Su Z M and Wang E B 2010 Polyoxometalate-based porous framework with perovskite topology Cryst. Growth Des. 10 4227CrossRefGoogle Scholar
  21. 21.
    Du D Y, Qin J S, Sun Z, Yan L K, Okeeffe M, Su Z M, Li S L, Wang X H and Lan Y Q 2013 An unprecedented (3, 4, 24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production Sci. Rep. 3 2616Google Scholar
  22. 22.
    Yang D H, Liang Y F, Ma P T, Li S Z, Wang J P and Niu J Y 2014 Ligand-directed conformation of inorganic–organic molecular capsule and cage Inorg. Chem. 53 3048Google Scholar
  23. 23.
    Sheldrick GM 2010 SHELXTL (version 6.1) (Madison, WI: Bruker Analytical, X-ray Instruments Inc.)Google Scholar
  24. 24.
    Brown I D and Altermatt D 1985 Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database Acta Crystallogr. B 41 244Google Scholar
  25. 25.
    Correia I, Avecilla F, Marcao S and Pessoa J C 2004 Structural studies of decavanadate compounds with organic molecules and inorganic ions in their crystal packing Inorg. Chem. Acta  357 4476CrossRefGoogle Scholar
  26. 26.
    Kumagai H, Arishima M, Kitagawa S, Ymada K, Kawata S and Kaizaki S 2002 New hydrogen bond-supported 3-D molecular assembly from polyoxovanadate and tetramethylbiimidazole Inorg. Chem. 41 1989Google Scholar
  27. 27.
    Li T H, Lv J, Gao S Y, Li F and Cao R 2007 Inorganic–organic hybrid with 3D supramolecular channel assembled through \(\text{ C }-H\cdot \cdot \cdot \text{ O }\) interactions based on the decavanadate Chem. Lett. 36 356Google Scholar
  28. 28.
    Nakamura S and Ozeki T 2001 Hydrogen-bonded aggregates of protonated decavanadate anions in their tetraalkylammonium salts J. Chem. Soc. Dalton. Trans. 472Google Scholar
  29. 29.
    Qi Y F, Wang E B, Li J and Li Y G 2009 Two organic-inorganic poly(pseudo-rotaxane)-like composite solids constructed from polyoxovanadates and silver organonitrogen polymers J. Solid State Chem. 182 2640CrossRefGoogle Scholar
  30. 30.
    Ma H Y, Meng X, Sha J Q, Pang H J and Wu L Z 2011 Synthesis, crystal structure and properties of a new bi-dentate decavanadate \([\text{ Cu(en) }_{2}\text{ H }_{2}\text{ O }]_{2}[\text{ H }_{2}\text{ V }_{10}\text{ O }_{28}]\cdot 12\text{ H }_{2}\text{ O }\) Solid State Sci. 13 850CrossRefGoogle Scholar
  31. 31.
    Wang X L, Gao Q, Tian A X, Hu H L and Liu G C 2012 Effect of the Keggin anions on assembly of Cu\(^{\rm I}\)-bis(tetrazole) thioether complexes containing multinuclear Cu\(^{\rm I}\)-cluster J. Solid State Chem. 187 219CrossRefGoogle Scholar
  32. 32.
    Keita B, Oliveira P D, Nadjo L and Kortz U 2007 The Ball-Shaped Heteropolytungstates \([\{{\rm Sn}({\rm CH}_3)_2({\rm H}_2{\rm O})\}_{24}\{{\rm Sn}({\rm CH}_3)_2\}_{12}(A\text{- }{\rm XW}_9{\rm O}_{34})_{12}]^{36-}\) (X \(=\) P, As): Stability, Redox and Electrocatalytic Properties in Aqueous Media Chem. Eur. J. 13 5480CrossRefGoogle Scholar
  33. 33.
    Pichon C, Mialane P, Dolbecq A, Marrot J, RiviLre E, Keita B, Nadjo L and Secheresse F 2007 Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates Inorg. Chem. 46 5292Google Scholar
  34. 34.
    Keita B, Belhouari A, Nadjo L and Contant R 1995 Electrocatalysis by polyoxometalate/vbpolymer systems: Reduction of nitrite and nitric oxide J. Electroanal. Chem. 381 243CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Shaobin Li
    • 1
  • Zihao Li
    • 1
  • Jingyu Zhang
    • 1
  • Zhengnan Su
    • 1
  • Shiying Qi
    • 1
  • Shihong Guo
    • 1
  • Xiaoguo Tan
    • 1
  1. 1.College of Materials Science and EngineeringQiqihar UniversityQiqiharChina

Personalised recommendations