Skip to main content
Log in

Stabilisation of the [6]-prismane structure by silicon substitution

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Using the second-order Møller–Plesset perturbation (MP2) theoretic method and the cc-pVDZ basis set, it is shown that with an increase in the number of carbon atoms substituted by silicon, the [6]-prismane structure becomes increasingly more stable, relative to the two isolated benzene (like) structures. A similar trend is observed for germanium substituted prismanes as well. Extending this investigation, the stability of benzene-capped fullerene (\(\hbox {C}_{60}\) fused with benzene) is also investigated.

Graphical Abstract

Synopsis: Ab initio calculations show that the stability of the [6]-prismane structure increases with an increase in the substitution of carbon atoms in the individual benzene rings by silicon or germanium atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sinnokrot M O and Sherrill C D 2004 Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped and parallel-displaced configurations J. Phys. Chem. A 108 10200

    Article  CAS  Google Scholar 

  2. Park Y C and Lee J S 2006 Accurate ab initio binding energies of the benzene dimer 2006 J. Phys. Chem. A 110 5091

    Article  CAS  Google Scholar 

  3. Milliordos E, Aprà E and Xantheas S S 2014 Benchmark theoretical study of the \(\uppi \text{- }\uppi \) binding energy in the benzene dimer J. Phys. Chem. A 118 7568

    Article  Google Scholar 

  4. Gadre S R, Yeole, S D and Sahu N 2014 Quantum chemical investigations on molecular clusters Chem. Rev. 114 12132

    Article  CAS  Google Scholar 

  5. Arunan E and Gutowsky H S 1993 The rotational spectrum, structure and dynamics of a benzene dimer J. Chem. Phys. 98 4294

    Article  CAS  Google Scholar 

  6. Erlekam U, Frankowski M, Meijer G and von Holden G 2006 An experimental value for the \(B_{1u} \text{ C }-\text{ H }\) stretch mode in benzene J. Chem. Phys. 124 171101

    Article  Google Scholar 

  7. Chandrasekaran V, Biennier L, Arunan E, Talbi D and Georges R 2011 Direct infrared absorption spectroscopy of benzene dimer J. Phys. Chem. A 115 11263

    Article  CAS  Google Scholar 

  8. Mahadevi A S and Sastry G N 2013 Cation\(-\pi \) Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science Chem. Rev. 113 2100

    Article  CAS  Google Scholar 

  9. Kolakkandy S, Pratihar S, Aquino A J A, Wang H and Hase W L 2014 Properties of complexes formed by \(\text{ Na }^{+}, \text{ Mg }^{2+}\), and \(\text{ Fe }^{2+}\) binding with benzene molecules J. Phys. Chem. A 118 9500

    Article  CAS  Google Scholar 

  10. Dhindhwal V and Sathyamurthy 2016 The effect of hydration on the cation-\(\pi \) interaction between benzene and various cations J. Chem. Sci. 128 1597

    Article  CAS  Google Scholar 

  11. Rogachev A Y, Wen X-V and Hoffmann R 2012 Jailbreaking benzene dimers J. Am. Chem. Soc. 134 8062

    Article  CAS  Google Scholar 

  12. Greenberg A and Liebman J F 1978 Strained Organic Molecules: Organic Chemistry: A Series of Monographs Vol. 38 (New York: Academic Press)

  13. Lewars E G 2008 In Modeling Marvels: Computational Anticipation of Novel Molecules (Dordrecht: Springer Science)

  14. Ladenburg A1869 Bemerkungen zur aromatischen Theorie Ber. Dtsch. Chem. Ges. 2 140

    Article  Google Scholar 

  15. Disch R L and Schulman J M 1988 Ab initio heats of formation of medium-sized hydrocarbons.7. The [n] prismanes J. Am. Chem. Soc. 110 2102

    Article  CAS  Google Scholar 

  16. Jenkins S J and King D A 2000 Pentaprismane and hypostrophene from first-principles, with plane waves, Chem. Phys. Lett. 317 381

    Article  CAS  Google Scholar 

  17. Dailey W P 1987 The structure and energies of pentaprismane and hexaprismane – An ab initio study Tetrahedron Lett. 28 5787

    Article  CAS  Google Scholar 

  18. Shostachenko S A, Maslov M M, Prudkovskii V S and Katin K P 2015 Thermal stability of hexaprismane \(\text{ C }_{12}\text{ H }_{12}\) and octaprismane \(\text{ C }_{16}\text{ H }_{16}\) Phys. Solid State  57 1023

    Article  CAS  Google Scholar 

  19. Minyaev R M, Minkin V I, Gribanova T N, Starikov A G and Hoffmann R 2003 Poly[\(n\)]prismanes: A family of stable cage structures with half-planar carbon centers J. Org. Chem. 68 8588

    Article  CAS  Google Scholar 

  20. Pour N, Altus E, Basch H and Hoz S 2009 The origin of the auxetic effect in Prismanes: bowtie structure and the mechanical properties of biprismanes J. Phys. Chem. C 113 3467

    Article  CAS  Google Scholar 

  21. Pour N, Altus E, Basch H and Hoz S 2010 Silicon vs carbon in prismanes: reversal of a mechanical property by fluorine substitution J. Phys. Chem. C 114 10386

    Article  CAS  Google Scholar 

  22. Katz T J and Acton N 1973 Synthesis of prismane J. Am. Chem. Soc. 95 2738

  23. Eaton P E and Cole T W 1964 Cubane J. Am. Chem. Soc. 86 3157

  24. Eaton P E, Or Y S, Branca S J and Shankar B K R 1986 The synthesis of pentaprismane Tetrahedron 42 1621

    Article  CAS  Google Scholar 

  25. Eaton P E, Or Y S and Branca S J 1981 Pentaprismane J. Am. Chem. Soc. 103 2134

    Article  CAS  Google Scholar 

  26. Mehta G and Padma S 1987 Secohexaprismane J. Am. Chem. Soc. 109 2212

  27. Mehta G and Padma S 1991 Synthetic studies towards prismanes: Seco-[6]-prismane Tetrahedron 47 7783

    Article  CAS  Google Scholar 

  28. Alonso M, Poater J and Solà M 2007 Aromaticity changes along the reaction coordinate connecting the cyclobutadiene dimer to cubane and the benzene dimer to hexaprismane Struct. Chem. 18 773

    Article  CAS  Google Scholar 

  29. Wang Y and Robinson G H 2009 Unique homonuclear multiple bonding in main group compounds Chem. Commun. 35 5201

    Article  Google Scholar 

  30. Sasamori T, Han J S, Hironaka K, Takagi N, Nagase S and Tokitoh N 2010 Synthesis and structure of stable 1,2-diaryldisilyne Pure Appl. Chem. 82 603

  31. Takeda K and Shiraishi K 1994 Theoretical possibility of stage corrugation in Si and Ge analogs of graphite Phys. Rev. B 50 14916

    Article  CAS  Google Scholar 

  32. Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene Appl. Phys. Lett. 96 183102

    Article  Google Scholar 

  33. Mohan V and Datta A 2010 Structures and electronic properties of Si-substituted benzenes and their transition metal complexes J. Phys. Chem. Lett. 1 136

  34. Tamao K, Kobayashi M, Matsuo T, Furukawa S and Tsuji H 2012 The first observation of electroluminescence from di(2-naphthyl)disilene, an Si=Si double bond-containing \(\uppi \)-conjugated compound Chem. Commun. 48 1030

    Article  CAS  Google Scholar 

  35. Hobey W D 1965 Vibronic interaction of nearly degenerate states in substituted benzene anions J. Chem. Phys. 43 2187

    Article  CAS  Google Scholar 

  36. Jose D and Datta A 2012 Understanding of the buckling distortions in silicene J. Phys. Chem. C 116 24639

    Article  CAS  Google Scholar 

  37. Jose D and Datta A 2014 Structures and chemical properties of silicene: Unlike grapheme Acc. Chem. Res. 47 593

  38. Boltrushko V, Krasnenko V and Hizhnyakov V 2015 Pseudo Jahn-Teller effect in stacked benzene molecules Chem. Phys. 460 90.

    CAS  Google Scholar 

  39. Unno M 2014 Substituted polyhedral silicon and germanium clusters Struct. Bond. 156 49

    Article  CAS  Google Scholar 

  40. Gaussian 09, Revision C.01, Frisch M J et al., Gaussian, Inc., Wallingford CT, 2010

  41. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 \(\text{ C }_{60}\): Buckminsterfullerene Nature 318 162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Murugavel, IIT Bombay for pointing out the literature on the synthesis of Si and Ge analogs of some of the Platonic hydrocarbons. NS is an Honorary Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru. He is grateful to the Department of Science and Technology, New Delhi for a J C Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanasami Sathyamurthy.

Additional information

Dedicated to the memory of the late Professor Charusita Chakravarty.

Special Issue on THEORETICAL CHEMISTRY/CHEMICAL DYNAMICS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Equbal, A., Srinivasan, S. & Sathyamurthy, N. Stabilisation of the [6]-prismane structure by silicon substitution. J Chem Sci 129, 911–917 (2017). https://doi.org/10.1007/s12039-017-1264-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1264-8

Keywords

Navigation