Skip to main content
Log in

Crystal structure and morphology of β-HMX in acetone: A molecular dynamics simulation and experimental study

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Single crystals of β-Cyclotetramethylene tetranitramine (HMX) were prepared by the solvent evaporation method. The structure was then determined using infrared spectroscopy and single crystal X-ray diffraction. The modified attachment energy (AE) model was used to predict the morphologies of β-HMX in vacuum and in acetone. The morphology and sensitivity of HMX before and after recrystallization were characterized. The results of calculation showed that the (011) and (110) surfaces of β-HMX are of great morphological importance. The predicted β-HMX morphology agreed qualitatively with the SEM result. The sensitivity results show that recrystallization in acetone can effectively reduce the impact and friction sensitivities of β-HMX.

The modified attachment energy (AE) model was used to predict the morphologies of β-HMX in vacuum and in acetone, and compared with experimental morphology of HMX recrystallized in acetone. The results showed that the predicted β-HMX morphology (1a) agreed qualitatively with the SEM result (1b). Recrystallization in acetone can effectively reduce the impact and friction sensitivities of β-HMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hamshere B L, Lochert I J and Dexter R M 2003 In Evaluation of PBXN-109: The explosive fill for the Penguin Anti-Ship Missile Warhead. K Gooley (Ed.) (Edinburgh: Defence Science and Technology Organisation Salisbury Systems Sciences Lab) p. 27

  2. Kim K J, Park J H and Kim J B 2013 A Numerical Study on the Velocity of a Cylindrical Counter Projectile Using LX-14 Explosive Appl. Mech. Mater. 421 46

    Article  CAS  Google Scholar 

  3. Hoffman D M 2000 Fatigue of LX-14 and LX-19 Plastic Bonded Explosives J. Energ. Mater. 18 1

    Article  CAS  Google Scholar 

  4. Wu Y G, Wu X Q, Chen H W, Zhang L and Zhang C 2009 Performance of Nitramine Propellants with Different Phases of HMX Chin J. Energ. Mater. 17 206

    CAS  Google Scholar 

  5. Borne L 1998 Explosive Crystal Microstructure and Shock-Sensitivity of Cast Formulations Proc. 11th Symposium (International) on Detonation, Snowmass, CO, August 30–September 4, 1998, p. 658

  6. Antoine E D M and van der Heijden 2004 Physicochemical Parameters of Nitramines Influencing Shock Sensitivity Propellants Explos. Pyrotech. 29 304

    Article  Google Scholar 

  7. Kaully T and Keren B 2000 Paste explosive based on rouned HMX: Rheology, sensitivity, and mechanical properties Insensitive Munitions & Energetic Materials Technology Symposium. San Antonio, Teas

  8. Huang H J, Dong H S and Shu Y J 2003 The preparation of HMX crystals with defects and the influences of crystal defects on thermal sensitivity and stability Energy Mater. 11 123

    CAS  Google Scholar 

  9. Czerski H, Greenaway M W, Proud W G and Field J E 2004 β- δ phase transition during dropweight impact on HMX J. Appl. Phys. 96 4131

    Article  CAS  Google Scholar 

  10. Maruyama S and Ooshima H 2001 Mechanism of the solvent-mediated transformation of taltirelin polymorphs promoted by methanol Chem. Eng. J. 81 1

    Article  CAS  Google Scholar 

  11. Hod I, Mastai Y and Medina D D 2011 Effect of solvents on the growth morphology of DL-alanine crystals CrystEngComm 13 502

    Article  CAS  Google Scholar 

  12. Sangwal K, Zdyb A, Chocyk D and Mielniczek-Brzóska E 1996 Effect of Supersaturation and Temperature on the Growth Morphology of Ammonium Oxalate Monohydrate Crystals Obtained from Aqueous Solutions Cryst. Res. Technol. 31 267

    Article  CAS  Google Scholar 

  13. Horst J H T, Geertman R M, Heijden A E V D and Rosmalen G M V 1999 The influence of a solvent on the crystal morphology of RDX J. Cryst. Growth 198 773

    Article  Google Scholar 

  14. Chen J and Trout B L 2010 Computer-aided solvent selection for improving the morphology of needle-like crystals: A case study of 2,6-dihydroxybenzoic acid Cryst. Growth Des. 10 4379

    Article  CAS  Google Scholar 

  15. Shim H M and Koo K K 2014 Crystal Morphology Prediction of Hexahydro-1,3,5-trinitro-1,3,5-triazine by the Spiral Growth Model Cryst. Growth Des. 14 1802

    Article  CAS  Google Scholar 

  16. Gavezzotti A 2013 Crystal formation and stability: Physical principles and molecular simulation Cryst. Res. Technol. 48 793

    Article  CAS  Google Scholar 

  17. ter Horsta J H, Geertmanb R M and van Rosmalena G M 2001 The effect of solvent on crystal morphology J. Cryst. Growth 230 277

  18. Shi W Y, Xia M Z, Lei W and Wang F Y 2014 Solvent effect on the crystal morphology of 2,6-diamino-3,5-dinitropyridine-1-oxide: A molecular dynamics simulation study J. Mol. Graphics Modell. 50 71

    Article  CAS  Google Scholar 

  19. Liu N, Li Y N, Zeman S, Shu Y J, Wang B Z, Zhou Y S, Zhao Q L and Wang W L 2016 Crystal morphology of 3,4-bis (3-nitrofurazan-4-yl) furoxan (DNTF) in a solvent system: Molecular dynamics simulation and sensitivity study CrystEngComm 18 2843

    Article  CAS  Google Scholar 

  20. Liu N, Wang B Z, Shu Y J, Wu Z K, Zhou Q, Zhao Q L and WANG W L 2016 Molecular Dynamics Simulation on Crystal Morphology of FOX-7 Chin. J. Explos. Propell. 39 40

    Google Scholar 

  21. Ballav M B, Bhaskar J B and Gopal D 2006 Low-molecular-weight poly-carboxylate as crystal growth modifier in biomineralization J. Chem. Sci. 118 519

    Article  Google Scholar 

  22. Bagchi B and Kirkpatrick T R 1986 On the kinetics of crystal growth from a supercooled melt J. Chem. Sci. 96 465

    Article  CAS  Google Scholar 

  23. Berkovitch-Yellin Z 1985 Toward an ab initio derivation of crystal morphology J. Am. Chem. Soc. 107 8239

    Article  CAS  Google Scholar 

  24. Hartman P 1968 Theoretical morphology of crystals with the SnI 4 structure J. Cryst. Growth 2 385

    Article  CAS  Google Scholar 

  25. Tao J and Wang X F 2017 Molecular dynamics simulation for fluoropolymers applied in ε-CL-20-based explosive J. Adhes. Sci. Technol. 31 250

    Article  CAS  Google Scholar 

  26. Material Studio 3.0, Accelrys, San Diego, Ca, 2004

  27. Lorenzo L D, Tocci E, Gugliuzza A, Macchione M and Drioli E 2012 Pure and modified co-poly (amide-12-b-ethylene oxide) membranes for gas separation studied by molecular investigations Membranes 2 346

    Article  Google Scholar 

  28. Connolly M L 1983 Solvent-accessible surfaces of proteins and nucleic acids Science 221 709

    Article  CAS  Google Scholar 

  29. Sun H 1998 COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds J. Phys. Chem. B 102 7338

    Article  CAS  Google Scholar 

  30. Tao J, Wang X F, Zhao S X, Wang C L, Diao X Q and Han Z X 2017 Simulation and calculation for binding energy and mechanical properties of ε-CL-20/energetic polymer binder mixed system Chin. J. Energy Mater. 23 315

    Google Scholar 

  31. Tao J, Wang X F, Zhao S X, Diao X Q, Wang C L and Han Z X 2016 Molecular dynamics simulation of CL-20/ HMX cocrystal and blends Chin. J. Energy Mater. 24 324

    Google Scholar 

  32. Palmer S J P, Field J E and Huntley J M 1993 Deformation, Strengths and Strains to Failure of Polymer Bonded Explosives Proc. R. Soc. London, Ser. A 440 399

    Article  CAS  Google Scholar 

  33. Jaidann M, Abou H, Lafleur X and Brisson J 2011 Atomistic studies of RDX and FOX-7-Based Plastic-Bonded explosives: molecular dynamics simulation Procedia Comput. Sci. 4 1177

    Article  Google Scholar 

  34. Jin B, Shen J, Peng R F, Shu Y J, Chu S J and Dong H S 2012 Synthesis, characterization, thermal stability and mechanical sensitivity of polyvinyl azidoacetate as a new energetic binder J. Polym. Res. 19 9974

    Article  Google Scholar 

  35. Jennifer J and Michel P 2001 Particle design using supercritical fluids: Literature and patent survey J. Supercrit. Fluids 20 179

    Article  Google Scholar 

  36. Lee B M, Kim J S, Lee B C, Kim H S, Kim H and Lee Y W 2011 Preparation of micronized β-HMX using supercritical carbon dioxide as antisolvent Ind. Eng. Chem. Res. 50 9107

    Article  CAS  Google Scholar 

  37. Jiang Y L, Xu J J, Zhang H B and Sun J 2013 Research progress on HMX crystallization morphology Mater. Rev. 27 11

    Google Scholar 

  38. Boissonnat J D, Devillers O, Duquesne J and vinec M Y 1994 Computing connolly surfaces J. Mol. Graphics 12 61

    Article  Google Scholar 

  39. Kim C K, Lee B C and Lee Y W 2009 Solvent effect on particle morphology in recrystallization of HMX (cyclotetramethylenetetranitramine) using supercritical carbon dioxide as antisolvent Korean J. Chem. Eng. 26 1125

    Article  CAS  Google Scholar 

  40. Bowden F P, Yoffe A D and Hudson G E 1952 Initiation and Growth of Explosions in Liquids and Solids Am. J. Phys. 20 250

    Article  Google Scholar 

  41. Coffey C S and Armstrong R W 1981 In Description of “hot spots” associated with localized shear zone s in impact tests, shock waves and high strain rate phenomena in metals L David (Ed.) (New York: Plenum Press)

  42. Thomas P H 1965 A comparison of some hot spot theories Combust. Flame 9 369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JUN TAO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TAO, J., WANG, X. Crystal structure and morphology of β-HMX in acetone: A molecular dynamics simulation and experimental study. J Chem Sci 129, 495–503 (2017). https://doi.org/10.1007/s12039-017-1250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1250-1

Keywords

Navigation