Skip to main content
Log in

Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using Expanded Perlite-PPA as a heterogeneous solid acid catalyst in aqueous media

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Expanded Perlite-Polyphosphoric acid (EP-PPA) as a novel, efficient, recyclable and eco-benign heterogeneous catalyst has been applied for the green and rapid synthesis of aryl/alkylbis(indolyl)methanes, in water, in good to excellent yields. The catalyst was characterized by XRF, FT-IR, TGA/DTG, ICP-OES, SEM-EDX and pH analysis. Importantly, the newly synthesized heterogeneous solid acid catalyst can be recovered and reused six times without any significant loss in its catalytic potential. The remarkable features of the present methodology are high conversions, shorter reaction times, cleaner reaction profiles and simple work-up procedures.

The catalytic activity of Expanded Perlite- Polyphosphoric acid (EP-PPA) as a novel, efficient, recyclable and eco-benign heterogeneous catalyst was investigated for the green and rapid synthesis of aryl/alkylbis(indolyl)methanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Scheme 3
Figure 5

Similar content being viewed by others

References

  1. El-Gamal A A, Wang W L and Duh C Y 2005 Sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii J. Nat. Prod. 68 815

    Article  CAS  Google Scholar 

  2. Endo T, Tsuda M, Fromont J and Kobayashi J 2007 Hyrtinadine A, a Bis-indole Alkaloid from a Marine Sponge J. Nat. Prod. 70 423

    Article  CAS  Google Scholar 

  3. Garbe T R, Kobayashi M, Shimizu N, Takesue N, Ozawa M and Yukawa H 2000 Indolyl carboxylic acids by condensation of indoles with α-keto acids J. Nat. Prod. 63 596

    Article  CAS  Google Scholar 

  4. Sirisoma N, Pervin A, Drewe J, Tseng B and Cai S X 2009 Discovery of substituted N-(2-oxoindolin-3-ylidene)benzohydrazides as new apoptosis inducers using a cell- and caspase-based HTS assay Bioorg. Med. Chem. Lett. 19 2710

    Article  CAS  Google Scholar 

  5. Gribble G W (Ed.) 1996 Comprehensive heterocyclic chemistry (New York: Pergamom Press) p. 211

  6. Frost J M, Dart M J, Tietje K R, Garrison T R, Grayson G K, Daza A V, El-Kouhen O F, Miller L N, Li L L, Yao B B, Hsieh G C, Pai M, Zhu C Z, Chandran P and Meyer M D 2008 Indol-3-yl-tetramethylcyclopropyl ketones: Effects of indole ring substitution on CB2 cannabinoid receptor activity J. Med. Chem. 51 1904

    Article  CAS  Google Scholar 

  7. Morris S A and Anderson R J 1990 Brominated bis(indole) alkaloids from the marine sponge hexadella SP Tetrahedron Lett. 46 715

    Article  CAS  Google Scholar 

  8. (a) Ramirez A and Garcia Rubio S 2003 Current progress in the chemistry and pharmacology of akuammiline alkaloids Curr. Med. Chem. 10 1891; (b) Tjalkens R B and Safe S 2013 Use of diindolylmethane (DIM) compounds and derivatives as neuroprotective agents U.S. patent 8 580 843

  9. (a) Porter J K, Bacon C W, Robbins J D, Himmelsbach D S and Higman H C 1977 Indole alkaloids from Balansia epichloe (Weese) J. Agric. Food. Chem. 25 88; (b) Oh K B, Mar W, Kim S, Kim J Y, Lee T H, Kim J G, Shin D, Sim C J and Shin J 2006 Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the Sponge Spongosorites sp. Biol. Pharm. Bull. 29 570; (c) Fahy E, Potts B C M, Faulkner D J and Smith K 1991 6-Bromotryptamine derivatives from the Gulf of California tunicate didemnum candidum J. Nat. Prod. 54 564

  10. Bell R, Carmeli S and Sar N 1994 Vibrindole A, a metabolite of the marine bacterium, vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish ostracion cubicus J. Nat. Prod. 57 1587

    Article  CAS  Google Scholar 

  11. Shankar M, Suvetha K, Kumarasamyraja D and Gowrishankar N L 2012 Synthesis and biological evaluation of novel pyrazolyl bis-indolylmethane Int. J. Pharm. Pharm. Sci. 4 518

    CAS  Google Scholar 

  12. (a) Huang M T, Osawa T, Ho C T and Rosen R T (Eds.) 1993 In Food phytochemicals for cancer prevention I (New Jersey: American Chemical Society) p. 17; (b) Zeligs M A 1998 Diet and estrogen status: The cruciferous connection J. Med. Food 1 67

  13. (a) Bell M C, Crowley-Nowick P, Bradlow H L, Sepkovic D W, Schmidt-Grimminger D, Howell P, Mayeaux E J, Tucker A, Turbat-Herrera E A and Mathis J M 2000 Placebo-controlled trial of indole-3-carbinol in the treatment of CIN Gynecol. Oncol. 78 123; (b) Thomas C H 1985 Low cost polyester modified phenolic resin containing a combination of long and short chain alkylphenols U.S. patent 4 500 689

  14. Kaishap P P and Dohutia C 2013 Synthetic approaches for bis(indolyl)methanes IJPSR 4 1312

    CAS  Google Scholar 

  15. Shiri M, Zolfigol M A, Kruger H G and Tanbakouchian Z 2010 Bis- and trisindolylmethanes (BIMs and TIMs) Chem. Rev. 110 2250

    Article  CAS  Google Scholar 

  16. Chakrabarty M, Ghosh N, Basak R and Harigaya Y 2002 Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: A mild, expedient synthesis of diindolylalkanes and vibrindole A Tetrahedron Lett. 43 4075

    Article  CAS  Google Scholar 

  17. Yadav J S, Reddy B V S and Satheesh G 2004 Montmorillonite clay catalyzed alkylation of pyrroles and indoles with cyclic hemi-acetals Tetrahedron Lett. 45 3673

    Article  CAS  Google Scholar 

  18. Zhang C L and Du Z Q 2009 Synthesis of bis-indolylmethanes catalyzed by oxone Chin. Chem. Lett. 20 1411

    Article  CAS  Google Scholar 

  19. Azizian J, Teimouri F and Mohamadizadeh M R 2007 Ammonium chloride catalyzed one-pot synthesis of diindolylmethanes under solvent-free conditions Catal. Commun. 8 1117

    Article  CAS  Google Scholar 

  20. Alinezhad H, Haghighi A H and Salehian F 2010 A green method for the synthesis of bis-indolylmethanes and 3,3-indolyloxindole derivatives using cellulose sulfuric acid under solvent-free conditions Chin. Chem. Lett. 21 183

    Article  CAS  Google Scholar 

  21. Das P J and Das J 2012 Synthesis of aryl/alkyl(2,2-bis-3-methylindolyl)methanes and aryl(3,3-bis indolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation Tetrahedron Lett. 53 4718

    Article  CAS  Google Scholar 

  22. Kokare N D, Sangshetti J N and Shinde D B 2008 Oxalic acid as a catalyst for efficient synthesis of bis- (indolyl)methanes, and 14-aryl-14H-dibenzo[ a,j]xanthenes in water Chin. Chem. Lett. 19 1186

    Article  CAS  Google Scholar 

  23. Chen D, Yu L and Wang P G 1996 Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones Tetrahedron Lett. 37 4467

    Article  CAS  Google Scholar 

  24. Ghosh R and Maiti S 2007 Advances in indium triflate catalyzed organic syntheses J. Mol. Catal. A: Chem. 264 1

    Article  CAS  Google Scholar 

  25. Zolfigol M A, Salehi P, Shiri M and Tanbakouchian Z 2007 A new catalytic method for the preparation of bis-indolyl and tris-indolyl methanes in aqueous media Catal. Commun. 8 173

    Article  CAS  Google Scholar 

  26. Heravi M M, Bakhtiari K, Fatehi A and Bamoharram F F 2008 A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid Catal. Commun. 9 289

    Article  CAS  Google Scholar 

  27. Nadkarni S V, Gawande M B, Jayaram R V and Nagarkar J M 2008 Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia Catal. Commun. 9 1728

    Article  CAS  Google Scholar 

  28. Satam J R, Parghi K D and Jayaram R V 2008 12-Tungstophosphoric acid supported on zirconia as an efficient and heterogeneous catalyst for the synthesis of bis(indolyl)methanes and tris(indolyl)methanes Catal. Commun. 9 1071

    Article  CAS  Google Scholar 

  29. Yadav J S, Reddy B V S, Padmavani B and Gupta M K 2004 Gallium(III) halide-catalyzed coupling of indoles with phenylacetylene: Synthesis of bis(indolyl)phenylethanes Tetrahedron Lett. 45 7577

    Article  CAS  Google Scholar 

  30. Hosseini-Sarvari M 2008 Synthesis of bis(indolyl) methanes using a catalytic amount of ZnO under solvent-free conditions Synth. Commun. 38 832

    Article  CAS  Google Scholar 

  31. Ji S J, Zhou M F, Gu D G, Jiang Z Q and Loh T P 2004 Efficient FeIII-catalyzed synthesis of bis(indolyl) methanes in ionic liquids Eur. J. Org. Chem. 2004 1584

    Article  Google Scholar 

  32. Sadaphal S A, Kategaonkar A H, Labade V B and Shingare M S 2010 Synthesis of bis(indolyl) methanes using aluminium oxide (acidic) in dry media Chin. Chem. Lett. 21 39

    Article  CAS  Google Scholar 

  33. Jafarpour M, Rezaeifard A and Golshani T 2009 A new catalytic method for ecofriendly synthesis of bis- and trisindolylmethanes by zirconyldodecylsulfate under mild conditions J. Heterocycl. Chem. 46 535

    Article  CAS  Google Scholar 

  34. (a) Bandgar B P and Shaikh K A 2003 Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions Tetrahedron Lett. 44 1959; (b) Ji S J, Wang S Y, Zhang Y and Loh T P 2004 Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions Tetrahedron 60 2051

  35. Mendes S R, Thurow S, Fortes M P, Penteado F, Lenardão E J, Alves D, Perin G and Jacob R G 2012 Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface Tetrahedron Lett. 53 5402

    Article  CAS  Google Scholar 

  36. Yang Q, Yin Z L, Ouyang B L and Peng Y Y 2011 Pyridinium tribromide catalyzed condensation of indoles and aldehydes to form bisindolylalkanes Chin. Chem. Lett. 22 515

    Article  CAS  Google Scholar 

  37. Boroujeni K P and Parvanak K 2011 Efficient and solvent-free synthesis of bis-indolylmethanes using silica gel supported aluminium chloride as a reusable catalyst Chin. Chem. Lett. 22 939

    Article  CAS  Google Scholar 

  38. Veisi H, Maleki B, Eshbala F H, Veisi H, Masti R, Ashrafi S S and Baghayeri M 2014 In situ generation of Iron(III) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bisindolyl, tris-indolyl, di(bis-indolyl), tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water RSC Adv. 4 30683

    Article  CAS  Google Scholar 

  39. Ahad A, Farooqui M, Khan P M A and Farooqui M 2012 Efficient reusable solid supported acid catalyzed multi-component condensation of indole with carbonyl compounds under thermally and solvent free conditions Int. J. Green Chem. Bioproc. 2 31

    Google Scholar 

  40. Kirti S, Kumar D, Kumar Mogha N, Singh V and Masram D T 2016 An efficient synthesis of bis(indolyl) methanes under solvent free condition using silica supported polyphosphoric acid (PPA-SiO2) as recyclable catalyst IJSTR 6 15

    Google Scholar 

  41. Mendes S R, Thurow S, Penteado F, da Silva M S, Gariani R A, Perin G and Lenardão E J 2015 Synthesis of bis(indolyl)methanes using ammonium niobium oxalate (ANO) as an efficient and recyclable catalyst Green Chem. 17 4334

    Article  CAS  Google Scholar 

  42. Kobayashi S, Araki M and Yasuda M 1995 One-pot synthesis of β-amino esters from aldehydes using lanthanide triflate as a catalyst Tetrahedron Lett. 36 5773

    Article  CAS  Google Scholar 

  43. Karthik M, Tripathi A K, Gupta N M, Palanichamy M and Murugesan V 2004 Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: Synthesis of bis(indolyl)methanes Catal. Commun. 5 371

    Article  CAS  Google Scholar 

  44. (a) Baranova O V and Dubovitskii S V 2004 An unexpected rearrangement of 3-unsubstituted-2-acyl substituted indole phenylhydrazones. A new method for benz[c] β-carboline synthesis Tetrahedron Lett. 45 1299; (b) Mederski W W K R, Baumgarth M, Germann M, Kux D and Weitzel T 2003 A convenient synthesis of 4-aminoaryl substituted cyclic imides Tetrahedron Lett. 44 2133; (c) Dubovitskii S V 1996 Method for synthesis of 12H-pyrido[1,CR2-a:3,4-b’]diindoles. Total synthesis of homofascaplysin C Tetrahedron Lett. 37 5207

  45. (a) Razavi N and Akhlaghinia B 2015 Cu(II) immobilized on aminated epichlorohydrin activated silica (CAES): As a new, green and efficient nanocatalyst for preparation of 5-substituted-1H-tetrazoles RSC Adv. 5 12372; (b) Ghodsinia S S E and Akhlaghinia B 2015 A rapid metal free synthesis of 5-substituted-1H-tetrazoles using cuttlebone as a natural high effective and low cost heterogeneous catalyst RSC Adv. 5 49849; (c) Zarghani M and Akhlaghinia B 2015 Copper immobilized on aminated ferrite nanoparticles by 2-aminoethyl dihydrogen phosphate (Fe3O4@AEPH2-CuII) catalyses the conversion of aldoximes to nitriles Appl. Organomet. Chem. 29 683; (d) Zarei Z and Akhlaghinia B 2015 Ce(III) immobilised on aminated epichlorohydrin-activated agarose matrix – “green” and efficient catalyst for transamidation of carboxamides Chem. Pap. - Chem. Zvesti 69 1421; (e) Zarghani M and Akhlaghinia B 2015 Sulfonated nanohydroxyapatite functionalized with 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as a new recyclable and eco-friendly catalyst for rapid one-pot synthesis of 4,4-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s RSC Adv. 5 87769; (f) Razavi N and Akhlaghinia B 2016 Hydroxyapatite nanoparticles (HAP NPs): A green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1 H)-one derivatives in aqueous media New J. Chem. 40 447; (g) Jahanshahi R and Akhlaghinia B 2015 Expanded perlite: An inexpensive natural efficient heterogeneous catalyst for the green and highly accelerated solvent-free synthesis of 5-substituted-1H-tetrazoles using [bmim]N3 and nitriles RSC Adv. 5 104087; (h)Yousefi Siavashi N, Akhlaghinia B and Zarghani M 2016 Sulfonated nanohydroxyapatite functionalized with 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as a reusable solid acid for direct esterification of carboxylic acids with alcohols Res. Chem. Intermed. 42 5789; (i) Karimian E, Akhlaghinia B and Ghodsinia S S E 2016 An efficient and convenient synthesis of N-substituted amides under heterogeneous condition using Al(HSO4)3 via Ritter reaction J. Chem. Sci. 128 429; (j) Jahanshahi R and Akhlaghinia B 2016 CuII immobilized on guanidinated epibromohydrin functionalized γ-Fe2O3@TiO2 (γ-Fe2O3@TiO2-EG-CuII): A novel magnetically recyclable heterogeneous nanocatalyst for the green one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles through alkyne–azide cycloaddition in water RSC Adv. 6 29210; (k) Zarghani M and Akhlaghinia B 2016 Magnetically separable Fe3O4@chitin as an eco-friendly nanocatalyst with high efficiency for green synthesis of 5-substituted-1H-tetrazoles under solvent-free conditions RSC Adv. 6 31850; (l) Ghodsinia S S E, Akhlaghinia B and Jahanshahi R 2016 Direct access to stabilized CuI using cuttlebone as a natural-reducing support for efficient CuAAC click reactions in water RSC Adv. 6 63613; (m) Zarghani M and Akhlaghinia B 2016 Green and efficient procedure for Suzuki–Miyaura and Mizoroki–Heck coupling reactions using palladium catalyst supported on phosphine functionalized ZrO2 NPs (ZrO2@ECP-Pd) as a new reusable nanocatalyst Bull. Chem. Soc. Jpn. 89 1192; (n) Masjed S M, Akhlaghinia B, Zarghani M and Razavi N 2016 Direct synthesis of nitriles from aldehydes and hydroxylamine hydrochloride catalyzed by a HAP@AEPH2-SO3H nanocatalyst Aust. J. Chem. doi:10.1071/CH16126; (o) Zarei Z and Akhlaghinia B 2016 Zn(II) anchored onto the magnetic natural hydroxyapatite (ZnII/HAP/Fe3O4): As a novel, green and recyclable catalyst for A3-coupling reaction towards propargylamine synthesis under solvent-free conditions RSC Adv. 6 106473; (p) Razavi N, Akhlaghinia B and Jahanshahi R 2017 Aminophosphine Palladium(0) complex supported on ZrO2 nanoparticles (ZrO2@AEPH2-PPh2-Pd(0)) as an efficient heterogeneous catalyst for Suzuki–Miyaura and Heck–Mizoroki reactions in green media Catal. Lett. 147 360; (q) Jahanshahi R and Akhlaghinia B 2017 Sulfonated Honeycomb Coral (HC-SO3H): A new, green and highly efficient heterogeneous catalyst for the rapid one-pot pseudo-five component synthesis of 4,4-(aryl methylene) bis(3-methyl-1H-pyrazol-5-ol)s Chem. Pap. doi:10.1007/s11696-016-0127-y

  46. Akcam O and Karaca E 2013 J. Text. Apparel. 23 233

    Google Scholar 

  47. (a) Erdem T K, Meral C, Tokyay M and Erdogan T Y 2007 Use of perlite as a pozzolanic addition in producing blended cements Cem. Concr. Compos. 29 13; (b) Hosseini S N, Borghei S M, Vossoughi M and Taghavinia N 2007 Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol Appl. Catal B: Environ. 74 53; (c) Sengul O, Azizi S, Karaosmanoglu F and Tasdemir M A 2011 Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete Energy Build. 43 671; (d) Yilmazer S and Ozdeniz M B 2005 The effect of moisture content on sound absorption of expanded perlite plates Build Environ. 40 311; (e) Roulia M, Chassapis K, Kapoutsis J A, Kamitsos E I and Savvidis T 2006 Influence of thermal treatment on the water release and the glassy structure of perlite J. Mater. Sci. 41 5870; (f) Acosta D, Martinez J, Carrera C, Erdmann E, Gonzo E and Destéfanis H 2006 New material as support for nickel boride catalyst Lat. Am. Appl. Res. 36 317

  48. (a) Nasrollahzadeh M, Sajadi S M, Rostami-Vartooni A, Bagherzadeh M and Safari R 2015 Immobilization of copper nanoparticles on perlite: Green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol J. Mol. Catal. A: Chem. 400 22; (b) Kolvari E, Koukabi N and Hosseini M M 2015 Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction J. Mol. Catal. A: Chem. 397 68; (c) Kolvari E, Koukabi N, Hosseini M M and Khandani Z 2015 Perlite: An inexpensive natural support for heterogenization of HBF4 RSC Adv. 5 36828; (d) Sahraeian R, Hashemi S A, Esfandeh M and Ghasemi I 2012 Preparation of nanocomposites based on LDPE/Perlite: Mechanical and morphological studies Polym. Polym. Compos. 20 639; (e) Thanh D N, Singh M, Ulbrich P, Strnadova N and Stepanek F 2011 Perlite incorporating γ-Fe2O3 and α-MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal Sep. Purif. Technol. 82 93; (f) Skubiszewska-Zięba J, Charmas B, Leboda R and Gun’ko V M 2012 Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits Micropor. Mesopor. Mat. 156 209; (g) Hasan S, Ghosh T K, Viswanath D S and Boddu V M 2008 Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity J. Hazard. Mater. 152 826

  49. Majouli A, Alami Younssi S, Tahiri S, Albizane A, Loukili H and Belhaj M 2011 Characterization of flat membrane support elaborated from local Moroccan Perlite Desalination 277 61

    Article  CAS  Google Scholar 

  50. Sodeyama K, Sakka Y and Kamino Y 1999 Preparation of fine expanded perlite J. Mater. Sci. 34 2461

    Article  CAS  Google Scholar 

  51. (a) Silverstein R M, Bassler G C and Morrill T C (Eds.) 1963 In Spectrometric identification of organic Compounds (New York, USA: Wiley) p. 162; (b) Pavia D L, Lampman G M, Kriz G S and Vyvyan J A (Eds) 2009 In Introduction to spectroscopy 4th ed (Brooks/Cole: Belmont) Vol. 43 Ch. 2 p. 84; (c) Ahsan M R, Uddin M A and Mortuza M G 2005 Infrared study of the effect of P2O5 in the structure of lead silicate glasses Indian J. Pure Appl. Phys. 43 89

  52. Titus E, Ali N, Cabral G, Gracio J, Ramesh Babu P and Jackson M J 2006 Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy J. Mater. Eng. Perform. 15 182

    Article  CAS  Google Scholar 

  53. Li C J and Chan T H (Eds.) 1997 In Organic reaction in aqueouse media (New York, USA: Wiley)

  54. Azizi N, Gholibeghlo E and Manocheri Z 2012 Green procedure for the synthesis of bis(indolyl)methanes in water Sci. Iran. 19 574

    Article  CAS  Google Scholar 

  55. Teimouri M B and Mivehchi H 2005 Efficient hexamethylenetetramine-bromine (HMTAB)-catalyzed synthesis of bis(indolyl)methanes in water Synth. Commun. 35 1835

    Article  CAS  Google Scholar 

  56. Seyedi N, Khabazzadeh H and Saidi K 2009 Cu1.5PMo12O40 as an efficient, mild and heterogeneous catalyst for the condensation of indole with carbonyl compounds Mol. Divers. 13 337

    Article  CAS  Google Scholar 

  57. Meshram G A and Patil V D 2009 Simple and efficient method for synthesis of bis(indolyl)methanes with Cu(BF4)2⋅SiO2 under mild conditions Synth. Commun. 40 29

    Article  Google Scholar 

  58. Shaabani A, Afshari R, Hooshmand S E, Tavousi Tabatabaei A and Hajishaabanha F 2016 Copper supported on MWCNT-guanidine acetic acid@Fe3O4: Synthesis, characterization and application as a novel multi-task nanocatalyst for preparation of triazoles and bis(indolyl)methanes in water RSC Adv. 6 18113

    Article  CAS  Google Scholar 

  59. Liang D, Huang W, Yuan L, Ma Y, Ma J and Ning D 2014 An underrated cheap Lewis acid: Molecular bromine as a robust catalyst for bis(indolyl)methanes synthesis Catal. Commun. 55 11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support of this study by Ferdowsi University of Mashhad Research Council (Grant no. p/3/40471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BATOOL AKHLAGHINIA.

Additional information

Supplementary Information (SI)

Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 16.0 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ESMAIELPOUR, M., AKHLAGHINIA, B. & JAHANSHAHI, R. Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using Expanded Perlite-PPA as a heterogeneous solid acid catalyst in aqueous media. J Chem Sci 129, 313–328 (2017). https://doi.org/10.1007/s12039-017-1246-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1246-x

Keywords

Navigation