Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 3, pp 405–414 | Cite as

Temperature Dependence of the Stability of Ion Pair Interactions, and its Implications on the Thermostability of Proteins from Thermophiles

  • SWETHA BIKKINA
  • AGASTYA P BHATI
  • SILADITYA PADHI
  • U DEVA PRIYAKUMAREmail author
Regular Article

Abstract

An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrence of salt bridges. The current study employs free energy calculations to elucidate the thermodynamics of the formation of salt bridge interactions and the temperature dependence, using acetate and methylguanidium ions as model systems. Three different orientations of the methylguanidinium approaching the carboxylate group have been considered for obtaining the free energy profiles. The association of the two ions becomes more favorable with an increase in temperature. The desolvation penalty corresponding to the association of the ion pair is the lowest at high temperatures. The occurrence of bridging water molecules between the ions ensures that the ions are not fully desolvated, and this could provide an explanation for the existence of internal water molecules in thermostable proteins reported recently. The findings provide a detailed picture of the interactions that make ion pair association at high temperatures a favorable process, and reaffirm the importance of salt bridges in the design of thermostable proteins.

Graphical Abstract

The role of salt bridges in stabilizing thermophilic proteins is elucidated in atomistic detail using free energy calculations. The association of salt bridges is more favorable at high temperatures compared to physiological temperatures, with bridging water molecules facilitating the association by lowering the desolvation penalty for the process.

Keywords

Thermostable proteins ion pairs salt bridges molecular dynamics free energy calculations 

Notes

Acknowledgments

This work was supported by the Department of Science and Technology, Government of India under the Women Scientists Scheme (grant no. SR/WOS-A/LS-1272/2014(G)).

References

  1. 1.
    Stetter K O 2006 Hyperthermophiles in the history of lifePhil Trans. R. Soc. B 361 1837CrossRefGoogle Scholar
  2. 2.
    Unsworth L D, Oost J V D and Koutsopoulos S 2007 Hyperthermophilic enzymes–stability, activity and implementation strategies for high temperature applications FEBS J. 274 4044CrossRefGoogle Scholar
  3. 3.
    Kashefi K 2003 Extending the upper temperature limit for life Science 301 934CrossRefGoogle Scholar
  4. 4.
    Luke K A, Higgins C L and Wittung-Stafshede P 2007 Thermodynamic stability and folding of proteins from hyperthermophilic organisms FEBS J. 274 4023CrossRefGoogle Scholar
  5. 5.
    Vieille C and Zeikus G J 2001 Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability Microbiol. Mol. Biol. Rev. 65 1CrossRefGoogle Scholar
  6. 6.
    Singh B, Bulusu G and Mitra A 2015 Understanding the thermostability and activity of Bacillus subtilis lipase mutants: Insights from molecular dynamics simulations J. Phys. Chem. B 119 392CrossRefGoogle Scholar
  7. 7.
    Lee C -W, Wang H -J, Hwang J -K and Tseng C -P 2014 Protein thermal stability enhancement by designing salt bridges: A combined computational and experimental study PLoS ONE 9 e112751CrossRefGoogle Scholar
  8. 8.
    Porebski B T, Nickson A A, Hoke D E, Hunter M R, Zhu L, McGowan S, Webb G I and Buckle A M 2015 Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain Protein Eng. Des. Sel. 28 67CrossRefGoogle Scholar
  9. 9.
    Bouzas T D M, Barros-Velazquez J and Villa T G 2006 Industrial applications of hyperthermophilic enzymes: A review Protein Pept. Lett. 13 645CrossRefGoogle Scholar
  10. 10.
    Blumer-Schuette S E, Kataeva I, Westpheling J, Adams M W and Kelly R M 2008 Extremely thermophilic microorganisms for biomass conversion: Status and prospects Curr. Opin. Biotechnol. 19 210CrossRefGoogle Scholar
  11. 11.
    Choi J -M, Han S -S and Kim H -S 2015 Industrial applications of enzyme biocatalysis: Current status and future aspects Biotechnol. Adv. 33 1443CrossRefGoogle Scholar
  12. 12.
    Rathi P C, Höffken H W and Gohlke H 2014 Quality matters: Extension of clusters of residues with good hydrophobic contacts stabilize (hyper)thermophilic proteins J. Chem. Inf. Model. 54 355CrossRefGoogle Scholar
  13. 13.
    Gromiha M M, Pathak M C, Saraboji K, Ortlund E A and Gaucher E A 2013 Hydrophobic environment is a key factor for the stability of thermophilic proteins Proteins 81 715CrossRefGoogle Scholar
  14. 14.
    Kumar S, Tsai C -J and Nussinov R 2000 Factors enhancing protein thermostability Protein Eng. Des. Sel. 13 179CrossRefGoogle Scholar
  15. 15.
    Yip K, Stillman T, Britton K, Artymiuk P, Baker P, Sedelnikova S, Engel P, Pasquo A, Chiaraluce R, Consalvi V, Scandurra R and Rice D 1995 The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures Structure 3 1147CrossRefGoogle Scholar
  16. 16.
    Missimer J H, Steinmetz M O, Baron R, Winkler F K, Kammerer R A, Daura X and Gunsteren W F V 2007 Configurational entropy elucidates the role of salt-bridge networks in protein thermostability Protein Sci. 16 1349CrossRefGoogle Scholar
  17. 17.
    Priyakumar U D 2012 Role of hydrophobic core on the thermal stability of proteins - molecular dynamics simulations on a single point mutant of Sso7d J. Biomol. Struct. Dyn. 29 961CrossRefGoogle Scholar
  18. 18.
    Priyakumar U D, Ramakrishna S, Nagarjuna K R and Reddy S K 2010 Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d J. Phys. Chem. B 114 1707CrossRefGoogle Scholar
  19. 19.
    Priyakumar U D, Harika G and Suresh G 2010 Molecular simulations on the thermal stabilization of DNA by hyperthermophilic chromatin protein Sac7d, and associated conformational transitions J. Phys. Chem. B 114 16548CrossRefGoogle Scholar
  20. 20.
    Manjunath K and Sekar K 2013 Molecular dynamics perspective on the protein thermal stability: A case study using SAICAR synthetase J. Chem. Inf. Model. 53 2448CrossRefGoogle Scholar
  21. 21.
    Merkley E D, Parson W W and Daggett V 2010 Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold Protein Eng. Des. Sel. 23 327CrossRefGoogle Scholar
  22. 22.
    Mamonova T B, Glyakina A V, Kurnikova M G and Galzitskaya O V 2010 Flexibility and mobility in mesophilic and thermophilic homologous proteins from molecular dynamics and FoldUnfold method J. Bioinform. Computat. Biol. 08 377CrossRefGoogle Scholar
  23. 23.
    Rahaman O, Kalimeri M, Melchionna S, Hénin J and Sterpone F 2015 Role of internal water on protein thermal stability: The case of homologous G domains J. Phys. Chem. B 119 8939CrossRefGoogle Scholar
  24. 24.
    Chakraborty D, Taly A and Sterpone F 2015 Stay wet, stay stable? How internal water helps the stability of thermophilic proteins J. Phys. Chem. B 119 12760CrossRefGoogle Scholar
  25. 25.
    Sterpone F, Bertonati C, Briganti G and Melchionna S 2009 Key role of proximal water in regulating thermostable proteins J. Phys. Chem. B 113 131CrossRefGoogle Scholar
  26. 26.
    Masunov A and Lazaridis T 2003 Potentials of mean force between ionizable amino acid side chains in water J. Am. Chem. Soc. 125 1722CrossRefGoogle Scholar
  27. 27.
    Kumar S and Nussinov R 2002 Relationship between ion pair geometries and electrostatic strengths in proteins Biophys. J. 83 1595CrossRefGoogle Scholar
  28. 28.
    Thomas A S and Elcock A H 2004 Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures J. Am. Chem. Soc. 126 2208CrossRefGoogle Scholar
  29. 29.
    Elcock A H 1998 The stability of salt bridges at high temperatures: Implications for hyperthermophilic proteins J. Mol. Biol. 284 489CrossRefGoogle Scholar
  30. 30.
    Yang H and Elcock A H 2003 Association lifetimes of hydrophobic amino acid pairs measured directly from molecular dynamics simulations J. Am. Chem. Soc. 125 13968CrossRefGoogle Scholar
  31. 31.
    Iwahara J, Esadze A and Zandarashvili L 2015 Physicochemical properties of ion pairs of biological macromolecules Biomolecules 5 2435CrossRefGoogle Scholar
  32. 32.
    Thomas A S and Elcock A H 2006 Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: Differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory J. Am. Chem. Soc. 128 7796CrossRefGoogle Scholar
  33. 33.
    Thomas A S and Elcock A H 2007 Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect J. Am. Chem. Soc. 129 14887CrossRefGoogle Scholar
  34. 34.
    Thomas A S and Elcock A H 2011 Direct measurement of the kinetics and thermodynamics of association of hydrophobic molecules from molecular dynamics simulations J. Phys. Chem. Lett. 2 19CrossRefGoogle Scholar
  35. 35.
    Zhu S and Elcock A H 2010 A complete thermodynamic characterization of electrostatic and hydrophobic associations in the temperature range 0 to 100C from explicit-solvent molecular dynamics simulations J. Chem. Theory Comput. 6 1293CrossRefGoogle Scholar
  36. 36.
    Debiec K T, Gronenborn A M and Chong L T 2014 Evaluating the strength of salt bridges: A comparison of current biomolecular force fields J. Phys. Chem. B 118 6561CrossRefGoogle Scholar
  37. 37.
    Brooks B R, Brooks C L, MacKerell A D, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor B, Venable R M, Woodcock H L, Wu X, Yang W, York D M and Karplus M 2009 CHARMM: The biomolecular simulation program J. Comput. Chem. 30 1545CrossRefGoogle Scholar
  38. 38.
    MacKerell A D, Feig M and Brooks C L 2004 Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations J. Comput. Chem. 25 1400CrossRefGoogle Scholar
  39. 39.
    MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher I. W E, Roux B, Schlenkrich M, Smith J C, Stote T, Straub J E, Watanabe M, Wiorkiewicz-Kuczera J, Yin D and Karplus M 1998 All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B 102 3586CrossRefGoogle Scholar
  40. 40.
    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 Comparison of simple potential functions for simulating liquid water J. Chem. Phys. 79 926CrossRefGoogle Scholar
  41. 41.
    Darden T, York D and Pedersen L 1993 Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems J. Chem. Phys. 98 10089CrossRefGoogle Scholar
  42. 42.
    Ryckaert J -P, Ciccotti G and Berendsen H J 1977 Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes J. Comput. Phys. 23 327CrossRefGoogle Scholar
  43. 43.
    Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and Kollman P A 1992 The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method J. Comput. Chem. 13 1011CrossRefGoogle Scholar
  44. 44.
    Grossfield A “WHAM: the weighted histogram analysis method”, http: //membrane.urmc.rochester.edu/content/wham Date of access: 17.01.2017
  45. 45.
    Humphrey W, Dalke A and Schulten K 1996 VMD: Visual Molecular Dynamics J. Mol. Graphics 14 33CrossRefGoogle Scholar
  46. 46.
    Mondal A and Balasubramanian S 2015 A refined all-atom potential for imidazolium-based room temperature ionic liquids: Acetate, dicyanamide, and thiocyanate anions J. Phys. Chem. B 119 11041CrossRefGoogle Scholar
  47. 47.
    Mondal A and Balasubramanian S 2014 Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: A refined force field J. Phys. Chem. B 118 3409CrossRefGoogle Scholar
  48. 48.
    Mondal A and Balasubramanian S 2014 A molecular dynamics study of collective transport properties of imidazolium-based room-temperature ionic liquids J. Chem. Eng. Data 59 3061CrossRefGoogle Scholar
  49. 49.
    Szilágyi A and Závodszky P 2000 Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey Structure 8 493CrossRefGoogle Scholar
  50. 50.
    Kelly C A, Nishiyama M, Ohnishi Y, Beppu T and Birktoft J J 1993 Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus Biochemistry 32 3913CrossRefGoogle Scholar
  51. 51.
    Talon R, Coquelle N, Madern D and Girard E 2014 An experimental point of view on hydration/solvation in halophilic proteins Front. Microbiol. 5 66CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • SWETHA BIKKINA
    • 1
  • AGASTYA P BHATI
    • 1
  • SILADITYA PADHI
    • 1
  • U DEVA PRIYAKUMAR
    • 1
    Email author
  1. 1.Center for Computational Natural Sciences and BioinformaticsInternational Institute of Information TechnologyHyderabadIndia

Personalised recommendations